(2013•莆田)如圖是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面積分別為2,5,1,2.則最大的正方形E的面積是
10
10
分析:根據(jù)正方形的面積公式,結(jié)合勾股定理,能夠?qū)С稣叫蜛,B,C,D的面積和即為最大正方形的面積.
解答:解:根據(jù)勾股定理的幾何意義,可得A、B的面積和為S1,C、D的面積和為S2,S1+S2=S3,于是S3=S1+S2,
即S3=2+5+1+2=10.
故答案是:10.
點評:本題考查了勾股定理的應(yīng)用.能夠發(fā)現(xiàn)正方形A,B,C,D的邊長正好是兩個直角三角形的四條直角邊,根據(jù)勾股定理最終能夠證明正方形A,B,C,D的面積和即是最大正方形的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田)如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,使得點C、A、B1在同一條直線上,那么旋轉(zhuǎn)角等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田)如圖,一次函數(shù)y=(m-2)x-1的圖象經(jīng)過二、三、四象限,則m的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田)如圖所示,某學(xué)校擬建一個含內(nèi)接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設(shè)AE=x米(0<x<4),矩形EFGH的面積為S米2
(1)求S與x的函數(shù)關(guān)系式;
(2)學(xué)校準(zhǔn)備在矩形內(nèi)種植紅色花草,四個三角形內(nèi)種植黃色花草.已知紅色花草的價格為20元/米2,黃色花草的價格為40元/米2.當(dāng)x為何值時,購買花草所需的總費用最低,并求出最低總費用(結(jié)果保留根號)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田)如圖,拋物線y=ax2+bx+c的開口向下,與x軸交于點A(-3,0)和點B(1,0).與y軸交于點C,頂點為D.
(1)求頂點D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點P,且∠PAB=∠DAC,求平移后拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案