【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).
【答案】
(1)
解:依題意得: ,
解之得: ,
∴拋物線解析式為y=﹣x2﹣2x+3
∵對稱軸為x=﹣1,且拋物線經(jīng)過A(1,0),
∴把B(﹣3,0)、C(0,3)分別代入直線y=mx+n,
得 ,
解之得: ,
∴直線y=mx+n的解析式為y=x+3
(2)
解:設(shè)直線BC與對稱軸x=﹣1的交點為M,則此時MA+MC的值最。
把x=﹣1代入直線y=x+3得,y=2,
∴M(﹣1,2),
即當(dāng)點M到點A的距離與到點C的距離之和最小時M的坐標(biāo)為(﹣1,2)
(3)
解:設(shè)P(﹣1,t),
又∵B(﹣3,0),C(0,3),
∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,
①若點B為直角頂點,則BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;
②若點C為直角頂點,則BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,
③若點P為直角頂點,則PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1= ,t2= ;
綜上所述P的坐標(biāo)為(﹣1,﹣2)或(﹣1,4)或(﹣1, ) 或(﹣1, ).
【解析】(1)先把點A,C的坐標(biāo)分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標(biāo)代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;(2)設(shè)直線BC與對稱軸x=﹣1的交點為M,則此時MA+MC的值最小.把x=﹣1代入直線y=x+3得y的值,即可求出點M坐標(biāo);(3)設(shè)P(﹣1,t),又因為B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2 , PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點A在射線CE上,∠C=∠D.
(1)如圖1,若AC∥BD,求證:AD∥BC;
(2)如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄?/span>∠DAE與∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;
(3)如圖3,在(2)的條件下,過點D作DF∥BC交射線于點F,當(dāng)∠DFE=8∠DAE時,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,則∠EOF的度數(shù)是( 。
A. 88° B. 30° C. 32° D. 48°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB∥CD,試求∠BPD與∠B、∠D的數(shù)量關(guān)系,說明理由.
(1)填空:
解:過點P作EF∥AB,
∴∠B+∠BPE=180°
∵AB∥CD,EF∥AB
∴ (如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
∠EPD+ =180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(2)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的數(shù)量關(guān)系,并說明理由.
(3)觀察圖(3)和(4),已知AB∥CD,直接寫出圖中的∠BPD與∠B、∠D的數(shù)量關(guān)系,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道L上確定點D,使CD與L垂直,測得CD的長等于24米,在L上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù): ≈1.73, ≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)2﹣13+8;
(2)2+(﹣6)÷2×;
(3)5×22﹣3÷(﹣);
(4)﹣42+(﹣9)×[(﹣2)3+]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將邊長為1的正方形ABCD壓扁為邊長為1的菱形ABCD.在菱形ABCD中,∠A的大小為α,面積記為S.
(1)請補全下表:
30° | 45° | 60° | 90° | 120° | 135° | 150° | |
S | 1 |
(2)填空:
由(1)可以發(fā)現(xiàn)正方形在壓扁的過程中,菱形的面積隨著∠A大小的變化而變化,不妨把菱形的面積S記為S(α).例如:當(dāng)α=30°時,;當(dāng)α=135°時,.由上表可以得到( ______°);( ______°),…,由此可以歸納出.
(3) 兩塊相同的等腰直角三角板按如圖的方式放置,AD=,∠AOB=α,試探究圖中兩個帶陰影的三角形面積是否相等,并說明理由(注:可以利用(2)中的結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數(shù) | 2 | 5 | 1 | 5 | 4 | 7 | 4 | 3 | 3 | 6 |
根據(jù)以上數(shù)據(jù),解答下列問題:
(I)直接填空:第10次摸棋子摸到黑棋子的頻率為 ;
(Ⅱ)試估算袋中的白棋子數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連接DF,CF.
(1)如圖1,當(dāng)點D在AB上,點E在AC上,請直接寫出此時線段DF,CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)90°時,若AD=1,AC= ,求此時線段CF的長(直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com