【題目】設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當(dāng)自變量x=a時(shí),相應(yīng)的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當(dāng)x=4時(shí),f(4)=42﹣2×4﹣3=5在平面直角坐標(biāo)系xOy中,對(duì)于函數(shù)的零點(diǎn)給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對(duì)應(yīng)的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點(diǎn),即存在c(a≤c≤b),使f(c)=0,則c叫做這個(gè)函數(shù)的零點(diǎn),c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.
觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點(diǎn).由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點(diǎn),﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問(wèn)題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點(diǎn)的個(gè)數(shù)是 .
(2)已知函數(shù)y2=f(x)=﹣ 的零點(diǎn)為x1 , x2 , 且x1<1<x2 .
①求零點(diǎn)為x1 , x2(用a表示);
②在平面直角坐標(biāo)xOy中,在x軸上A,B兩點(diǎn)表示的數(shù)是零點(diǎn)x1 , x2 , 點(diǎn) P為線段AB上的一個(gè)動(dòng)點(diǎn)(P點(diǎn)與A、B兩點(diǎn)不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點(diǎn)為Q,若a是整數(shù),求拋物線y2的表達(dá)式并直接寫(xiě)出線段PQ長(zhǎng)的取值范圍.
【答案】
(1)<;1
(2)
解:①∵x1、x2是零點(diǎn)
∴當(dāng)y=0時(shí),即﹣ =0.
方程可化簡(jiǎn)為 x2+2(a﹣1)x+(a2﹣2a)=0.
解方程,得x=﹣a或x=﹣a+2.
∵x1<1<x2,﹣a<﹣a+2,
∴x1=﹣a,x2=﹣a+2.
②∵x1<1<x2,
∴﹣a<1<﹣a+2.
∴﹣1<a<1.
∵a是整數(shù),
∴a=0,所求拋物線的表達(dá)式為y=﹣ x2+2 .
此時(shí)頂點(diǎn)C的坐標(biāo)為C(1, )如圖2,
,
作CD⊥AB于D,連接CQ,
則AD=1,CD= ,tan∠BAC= ,
∴∠BAC=60°
由拋物線的對(duì)稱(chēng)性可知△ABC是等邊三角形;
由△APM和△BPN是等邊三角形,線段MN的中點(diǎn)為Q可得,
點(diǎn)M、N分別在AC和BC邊上,四邊形PMCN的平行四邊形,
C、Q、P三點(diǎn)共線,且PQ= PC;
∵點(diǎn)P線段AB上運(yùn)動(dòng)的過(guò)程中,P與A、B兩點(diǎn)不重合,
DC≤PC<AC,DC= ,AC=2,
即 ≤PQ< ,
∴ ≤PQ<1;
線段PQ的長(zhǎng)的取值范圍為: ≤PQ<1
【解析】解:(1)①由圖象1,得f(a)f(b)<0,
②在a≤x≤b范圍內(nèi)y1=f(x)的零點(diǎn)的個(gè)數(shù)是 1.
所以答案是:<,1;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列條件,不能判定△ABC與△DEF相似的是( 。
A.∠C=∠F=90°,∠A=55°,∠D=35°
B.∠C=∠F=90°,AB=10,BC=6,DE=15,EF=9
C.∠C=∠F=90°, =
D.∠B=∠E=90°, =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個(gè)函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對(duì)于函數(shù)y=x+ ,求當(dāng)x>0時(shí),y的取值范圍.
請(qǐng)將下面求解此問(wèn)題的過(guò)程補(bǔ)充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,分別交AC,AB于D,E兩點(diǎn),并連結(jié)BD,DE. 則∠BDE的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)H在⊙O上,E是 的中點(diǎn),過(guò)點(diǎn)E作EC⊥AH,交AH的延長(zhǎng)線于點(diǎn)C.連接AE,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F.
(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,一次函數(shù) 與反比例函數(shù) 的圖象在第一象限的交點(diǎn)為A(1,n).
(1)求m與n的值;
(2)設(shè)一次函數(shù)的圖象與x軸交于點(diǎn)B,連結(jié)OA,求∠BAO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AC和直線l分別垂直線段AB于點(diǎn)A,B.點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn),由A移動(dòng)到B,連接CP,過(guò)點(diǎn)P作PD⊥CP交l于點(diǎn)D,設(shè)線段AP的長(zhǎng)為x,BD的長(zhǎng)為y,在下列圖象中,能大致表示y與x之間函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過(guò)點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)F,連接AE.
(1)求證:∠ABC=2∠CAF;
(2)過(guò)點(diǎn)C作CM⊥AF于M點(diǎn),若CM=4,BE=6,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題呈現(xiàn):
(Ⅰ)如圖1,點(diǎn)E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD . (S表示面積)
(Ⅱ)實(shí)驗(yàn)探究:某數(shù)學(xué)實(shí)驗(yàn)小組發(fā)現(xiàn):若圖1中AH≠BF,點(diǎn)G在CD上移動(dòng)時(shí),上述結(jié)論會(huì)發(fā)生變化,分別過(guò)點(diǎn)E、G作BC邊的平行線,再分別過(guò)點(diǎn)F、H作AB邊的平行線,四條平行線分別相交于點(diǎn)A1、B1、C1、D1 , 得到矩形A1B1C1D1 .
如圖2,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)C靠近(DG>AE),經(jīng)過(guò)探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+S .
如圖3,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)D靠近(DG<AE),請(qǐng)?zhí)剿鱏四邊形EFGH、S矩形ABCD與S 之間的數(shù)量關(guān)系,并說(shuō)明理由.
(Ⅲ)遷移應(yīng)用:
請(qǐng)直接應(yīng)用“實(shí)驗(yàn)探究”中發(fā)現(xiàn)的結(jié)論解答下列問(wèn)題:
⑴如圖4,點(diǎn)E、F、G、H分別是面積為25的正方形ABCD各邊上的點(diǎn),已知AH>BF,AE>DG,S四邊形EFGH=11,HF= ,求EG的長(zhǎng).
⑵如圖5,在矩形ABCD中,AB=3,AD=5,點(diǎn)E、H分別在邊AB、AD上,BE=1,DH=2,點(diǎn)F、G分別是邊BC、CD上的動(dòng)點(diǎn),且FG= ,連接EF、HG,請(qǐng)直接寫(xiě)出四邊形EFGH面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com