已知b<0時(shí),二次函數(shù)的圖象如下列四個(gè)圖之一所示.根據(jù)圖象分析,a的值等于
A.-2B.-1C.1D.2
C。
由圖可知,第1、2兩個(gè)圖形的對(duì)稱軸為y軸,所以,解得b=0,與b<0相矛盾。
第3個(gè)圖,拋物線開(kāi)口向上,a>0,經(jīng)過(guò)坐標(biāo)原點(diǎn),a2-1=0,解得a1=1,a2=-1(舍去)。
對(duì)稱軸,解得b<0,符合題意。故a=1。
第4個(gè)圖,拋物線開(kāi)口向下,a<0,經(jīng)過(guò)坐標(biāo)原點(diǎn),a2-1=0,解得a1=1(舍去),a2=-1。
對(duì)稱軸,解得b>0,不符合題意。
綜上所述,a的值等于1。故選C。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.

(1)求經(jīng)過(guò)點(diǎn)O,C,A三點(diǎn)的拋物線的解析式.
(2)求拋物線的對(duì)稱軸與線段OB交點(diǎn)D的坐標(biāo).
(3)線段OB與拋物線交與點(diǎn)E,點(diǎn)P為線段OE上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,點(diǎn)E重合),過(guò)P點(diǎn)作y軸的平行線,交拋物線于點(diǎn)M,問(wèn):在線段OE上是否存在這樣的點(diǎn)P,使得PD=CM?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(﹣1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P的正半軸交于點(diǎn)C.

(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),求直線MC對(duì)應(yīng)的函數(shù)解析式;
(3)試說(shuō)明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

崇左市政府大樓前廣場(chǎng)有一噴水池,水從地面噴出,噴出水的路徑是一條拋物線.如果以水平地面為x軸,建立如圖所示的平面直角坐標(biāo)系,水在空中劃出的曲線是拋物線y=﹣x2+4x(單位:米)的一部分.則水噴出的最大高度是   千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的部分對(duì)應(yīng)值如下表:
x

-2
-1
0
1
2
3

y

5
0
-3
-4
-3
0

(1)二次函數(shù)圖象所對(duì)應(yīng)的頂點(diǎn)坐標(biāo)為           
(2)當(dāng)x=4時(shí),y=           
(3)由二次函數(shù)的圖象可知,當(dāng)函數(shù)值y<0時(shí),x的取值范圍是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y = -(x+1)2+3的頂點(diǎn)坐標(biāo)(   )
A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=2(x+1)(x-a),其中a>0,若當(dāng)x≤2時(shí),y隨x增大而減小,當(dāng)x≥2時(shí)y隨x增大而增大,則a的值是
A.3B.5C.7D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某汽車銷售公司10月份銷售某廠家的汽車.在一定范圍內(nèi),每部汽車的進(jìn)價(jià)與銷售量有如下關(guān)系:若當(dāng)月僅售出1部汽車,則該部汽車的進(jìn)價(jià)為30萬(wàn)元;每多售出1部,所有售出的汽車的進(jìn)價(jià)均降低0.2萬(wàn)元/部.
(1)若該公司當(dāng)月售出2部汽車,則每部汽車的進(jìn)價(jià)為   萬(wàn)元;
(2)如果汽車的售價(jià)為31萬(wàn)元/部.
①寫(xiě)出公司當(dāng)月盈利y(萬(wàn)元)與汽車銷售量x(部)之間的函數(shù)關(guān)系式;
②若該公司當(dāng)月盈利28萬(wàn)元,求售出汽車的數(shù)量.

查看答案和解析>>

同步練習(xí)冊(cè)答案