CD是Rt△ABC斜邊AB上的高,若AB=10,AC:BC=3:4,則CD的長為( 。
分析:首先利用勾股定理求得直角邊AC=6,BC=8;然后利用面積法來求CD的長度.
解答:解:如圖,∵在Rt△ABC中,AB=10,AC:BC=3:4,
∴設AC=3x,BC=4x(x>0),則由勾股定理得到:AB2=AC2+BC2,即100=9x2+16x2,
解得,x=2,
∴AC=6,BC=8,
1
2
×6×8=
1
2
×10×CD,
∴CD=
24
5

故選:B.
點評:本題考查了勾股定理.如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊上的高,E為AC的中點,ED交CB的延長線于F.
求證:BD•CF=CD•DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,CD是Rt△ABC斜邊AB上的高,AF為角平分線,AF交BC于F,交CD于E,過E作EG∥AB,與BC交于G,過F向AB作垂線,垂足為H.
求證:(1)CF=BG;
(2)四邊形CEHF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,CD是Rt△ABC斜邊AB上的中線,若CD=4,則AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知,CD是Rt△ABC斜邊上的高,∠ACB=90°,AC=4m,BC=3m,則線段CD的長為(  )
A、5m
B、
12
5
m
C、
5
12
m
D、
4
3
m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊AB上的高,直角邊AC=2
3
,現(xiàn)將△BCD沿CD折疊,B點恰好落在AB的中點E處,則陰影部分的面積等于
 

查看答案和解析>>

同步練習冊答案