(2005•中原區(qū))已知梯形ABCD中,AD∥BC,AB=CD,∠B=45°,它的高為2cm,中位線長為5cm,則上底AD等于    cm.
【答案】分析:過A作AE⊥BC于E,過D作DF⊥BC于F,則AE=DF=2cm,AD=EF,根據(jù)已知可求得BE的長,從而根據(jù)梯形中位線定理即可求得AD的長.
解答:如圖:梯形ABCD中,AD∥BC,AB=CD,∠B=45°
解:過A作AE⊥BC于E,過D作DF⊥BC于F,則AE=DF=2cm,AD=EF
在Rt△ABE中,
∵∠B=45°
∴AE=BE=2cm
同理DF=FC=2cm
∴BC+AD=2AD+2BE=2×5=10cm
∴AD=3cm.
點評:此題考查的是梯形中位線的性質(zhì)定理,解答此題的關(guān)鍵是作出輔助線根據(jù)等腰直角三角形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

同步練習(xí)冊答案