已知:ABCD的對(duì)角線交點(diǎn)為O,點(diǎn)E、F分別在邊AB、CD上,分別沿DE、BF折疊四邊形ABCD, A、C兩點(diǎn)恰好都落在O點(diǎn)處,且四邊形DEBF為菱形(如圖).

⑴求證:四邊形ABCD是矩形;
⑵在四邊形ABCD中,求的值.

(1)證明:連結(jié)OE

∵四邊形ABCD是平行四邊形,
∴DO=OB,
∵四邊形DEBF是菱形,
∴DE=BE,
∴EO⊥BD
∴∠DOE= 90°
即∠DAE= 90°
又四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形
(2)解:∵四邊形DEBF是菱形
∴∠FDB=∠EDB
又由題意知∠EDB=∠EDA
由(1)知四邊形ABCD是矩形
∴∠ADF=90°,即∠FDB+∠EDB+∠ADE=90°
則∠ADB= 60°
∴在Rt△ADB中,有AD∶AB=1∶

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知?ABCD的對(duì)角∠BAD和∠BCD互補(bǔ).
(1)求∠BAD的度數(shù);
(2)若AC=x+
3
+1,BD=3+
3
-x,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,EF過(guò)平行四邊形ABCD的對(duì)角形的交點(diǎn)O,交AD于點(diǎn)E,交BC于點(diǎn)F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長(zhǎng)是
15
15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知四邊形ABCD是平行四邊形,則下列結(jié)論中哪一個(gè)不滿足平行四邊形的性質(zhì)(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是射線DA一動(dòng)點(diǎn)(DE>1),連結(jié)BE,以BE為邊在BE上方作正方形BEFG,設(shè)M為正方形BEFG的中心,如果定義:只有一組對(duì)角是直角的四邊形叫做損矩形.
(1)試找出圖中的一個(gè)損矩形并簡(jiǎn)單說(shuō)明理由.
(2)連接AM,無(wú)論點(diǎn)E位置怎樣變化,求證:DB∥AM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:047

已知:ABCD的對(duì)角AC的垂直平分線與邊AD、BC分別交于E、F(如圖).

求證:四邊形AFCE是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案