【題目】如圖,點A1 , A2在射線OA上,B1在射線OB上,依次作A2B2∥A1B1 , A3B2∥A2B1 , A3B3∥A2B2 , A4B3∥A3B2 , ….若△A2B1B2和△A3B2B3的面積分別為1、9,則△A1007B1007A1008的面積是 .
【答案】34031
【解析】解:∵△A2B1B2和△A3B2B3的面積分別為1、9,A3B3∥A2B2 , A3B2∥A2B1 , ∴∠B1B2A2=∠B2B3A3 , ∠A2B1B2=∠A3B2B3 ,
∴△A2B1B2∽△A3B2B3 ,
∴ = = = = ,
∵A3B2∥A2B1 ,
∴△OA2B1∽△OA3B2 ,
∴ = = = ,
∴△OB1A2的面積為 ,△A1B1A2的面積為 ,△A2B2A3的面積為3,△A3B3A4的面積為27,…
∴△A1007B1007A1008的面積為 ×32=34031 ,
故答案為34031 .
根據(jù)面積比等于相似比的平方,從而可推出相鄰兩個三角形的相似比為1:3,面積比為1:9,先利用等底三角形的面積之比等于高之比可求出第一個及第二個三角形的面積,再根據(jù)規(guī)律即可解決問題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=﹣2x+b(b≥0)的位置隨b的不同取值而變化.
(1)已知⊙M的圓心坐標(biāo)為(4,2),半徑為2.
當(dāng)b=時,直線l:y=﹣2x+b(b≥0)經(jīng)過圓心M;
當(dāng)b=時,直線l:y=﹣2x+b(b≥0)與⊙M相切;
(2)若把⊙M換成矩形ABCD,其三個頂點坐標(biāo)分別為:A(2,0)、B(6,0)、C(6,2).設(shè)直線l掃過矩形ABCD的面積為S,當(dāng)b由小到大變化時,請求出S與b的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小強(qiáng)洗漱時的側(cè)面示意圖,洗漱臺(矩形 )靠墻擺放,高 ,寬 ,小強(qiáng)身高 ,下半身 ,洗漱時下半身與地面成 ( ),身體前傾成 ( ),腳與洗漱臺距離 (點 , , , 在同一直線上).
(1)此時小強(qiáng)頭部 點與地面 相距多少?
(2)小強(qiáng)希望他的頭部 恰好在洗漱盆 的中點 的正上方,他應(yīng)向前或后退多少?
( , , ,結(jié)果精確到 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給下以下結(jié)論: ①2a﹣b=0;
②9a+3b+c<0;
③關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個相等實數(shù)根;
④8a+c<0.
其中正確的個數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是O的直徑,AE交O于點E,且與O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾天氣趨于嚴(yán)重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進(jìn)價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式及售價x的取值范圍;
售價(元/臺) | 月銷售量(臺) |
400 | 200 |
250 | |
x |
(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=12,BC=13,△ABD、△ACE、△BCF都是等邊三角形,則四邊形AEFD的面積S= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC中,點D、E、F、分別為邊AB,AC,BC的中點,M為直線BC動點,△DMN為等邊三角形
(1)如圖1,當(dāng)點M在點B左側(cè)時,請你判斷EN與MF有怎樣的數(shù)量關(guān)系?
(2)如圖2,當(dāng)點M在BC上時,其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請利用圖2證明;若不成立請說明理由;
(3)若點M在點C右側(cè)時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論是否仍然成立?若成立,請直接寫出結(jié)論,若不成立請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一堂關(guān)于“折紙問題”的數(shù)學(xué)綜合實踐探究課中,小明同學(xué)將一張矩形ABCD紙片,按如圖進(jìn)行折疊,分別在BC、AD兩邊上取兩點E,F(xiàn),使CE=AF,分別以DE,BF為對稱軸將△CDE與△ABF翻折得到△C′DE與△A′BF,且邊C′E與A′B交于點G,邊A′F與C′D交于一點H.已知tan∠EBG= ,A′G=6,C′G=1,則矩形紙片ABCD的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com