(2010•紹興)如圖,已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是的中點(diǎn),過點(diǎn)D作直線BC的垂線,分別交CB、CA的延長線E、F.
(1)求證:EF是⊙O的切線;
(2)若EF=8,EC=6,求⊙O的半徑.

【答案】分析:(1)要證EF是⊙O的切線,只要連接OD,再證OD⊥EF即可.
(2)先根據(jù)勾股定理求出CF的長,再根據(jù)相似三角形的判定和性質(zhì)求出⊙O的半徑.
解答:(1)證明:連接OD交于AB于點(diǎn)G.
∵D是的中點(diǎn),OD為半徑,
∴AG=BG.(2分)
∵AO=OC,
∴OG是△ABC的中位線.
∴OG∥BC,
即OD∥CE.(2分)
又∵CE⊥EF,
∴OD⊥EF,
∴EF是⊙O的切線.(1分)

(2)解:在Rt△CEF中,CE=6,EF=8,
∴CF=10.(1分)
設(shè)半徑OC=OD=r,則OF=10-r,
∵OD∥CE,
∴△FOD∽△FCE,
,(2分)
=
∴r=,
即:⊙O的半徑為.(2分)
點(diǎn)評:本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.同時(shí)考查了相似三角形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•紹興)如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(1)中拋物線的頂點(diǎn)時(shí),求CF的長;
(3)連接EF,設(shè)△BEF與△BFC的面積之差為S,問:當(dāng)CF為何值時(shí)S最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•紹興)如圖,設(shè)拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點(diǎn)為A,B,點(diǎn)A的坐標(biāo)是(2,4),點(diǎn)B的橫坐標(biāo)是-2.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)D在線段AB上,過D作x軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG.記過C2頂點(diǎn)M的直線為l,且l與x軸交于點(diǎn)N.
①若l過△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1,2),求點(diǎn)N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•紹興)如圖,設(shè)拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點(diǎn)為A,B,點(diǎn)A的坐標(biāo)是(2,4),點(diǎn)B的橫坐標(biāo)是-2.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)D在線段AB上,過D作x軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG.記過C2頂點(diǎn)M的直線為l,且l與x軸交于點(diǎn)N.
①若l過△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1,2),求點(diǎn)N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•紹興)如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(1)中拋物線的頂點(diǎn)時(shí),求CF的長;
(3)連接EF,設(shè)△BEF與△BFC的面積之差為S,問:當(dāng)CF為何值時(shí)S最小,并求出這個(gè)最小值.

查看答案和解析>>

同步練習(xí)冊答案