感知:如圖①,∠C=∠ABD=∠E=90°,可知△ACB∽△BED.(不要求證明)

拓展:如圖②,∠C=∠ABD=∠E.求證:△ACB∽△BED.
應(yīng)用:如圖③,∠C=∠ABD=∠E=60°,AC=4,BC=1,則△ABD與△BDE的面積比為
________.

13:3
分析:拓展:由∠C=∠ABD=∠E與∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,即可求得∠CAB=∠DBE,即可證得:△ACB∽△BED.
應(yīng)用:由△ACB∽△BED,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可求得△ABC與△BDE的面積比,△ABC與△ABE的面積比,繼而求得答案.
解答:拓展:證明:∵∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,∠C=∠ABD,
∴∠CAB=∠DBE,
∵∠C=∠E,
∴△ACB∽△BED;
應(yīng)用:解:∵∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,∠C=∠ABD,
∴∠CAB=∠DBE,
∵∠C=∠E=60°,
∴△ACB∽△BED,△ACE是等邊三角形,
∴AE=AC=4,
∴BE=CE-BC=3,
∴△ACB與△BED的相似比為:4:3,
∴S△ABC:S△BED=16:9,S△ABC:S△ABE=1:3=16:48,
設(shè)S△ABC=16x,則S△ABE=48x,S△BDE=9x
∴S△ABD=S△ABE-S△BED=48x-9x=39x,
∴S△ABD:S△BDE=39:9=13:3.
故答案為:13:3.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春)感知:如圖①,點(diǎn)E在正方形ABCD的邊BC上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

感知:如圖①,點(diǎn)E在正方形ABCD的BC邊上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G.可知△ADG≌△BAF.(不要求證明)

拓展:如圖②,點(diǎn)B、C在∠MAN的邊AM、AN上,點(diǎn)E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.

應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊B上.CD=2BD.點(diǎn)E,  F在線段AD上.∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為_(kāi)________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

感知:如圖①,點(diǎn)E在正方形ABCD的BC邊上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G.可知△ADG≌△BAF.(不要求證明)

拓展:如圖②,點(diǎn)B、C在∠MAN的邊AM、AN上,點(diǎn)E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.

應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊B上.CD=2BD.點(diǎn)E,  F在線段AD上.∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為_(kāi)________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(吉林長(zhǎng)春卷)數(shù)學(xué)(帶解析) 題型:解答題

感知:如圖①,點(diǎn)E在正方形ABCD的BC邊上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G.可知△ADG≌△BAF.(不要求證明)

拓展:如圖②,點(diǎn)B、C在∠MAN的邊AM、AN上,點(diǎn)E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊B上.CD=2BD.點(diǎn)E,  F在線段AD上.∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為_(kāi)________.

查看答案和解析>>

同步練習(xí)冊(cè)答案