已知a+b=4,ab=﹣5,求代數(shù)式a3b+2a2b2+ab3的值.

-80

解析試題分析:將所求式子提取公因式ab后,再利用完全平方公式分解因式,把a+b及ab的值代入計算,即可求出值.
解:∵a+b=4,ab=﹣5,
∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=﹣5×42=﹣80.
考點:因式分解的應用.
點評:此題考查了因式分解的應用,靈活運用完全平方公式是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB⊥BD,CD⊥BD,AD=BC.求證:
(1)AB=DC.
(2)AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AE=AC,AD=AB,∠EAD=∠CAB,求證:∠B=∠D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖1.若∠AOC=30°.求∠DOE的度數(shù);
(2)在圖1中,若∠AOC=a,直接寫出∠DOE的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的∠DOC繞頂點O順時針旋轉至圖2的位置,探究∠AOC和∠DOE的度數(shù)之間的關系.寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2;         
(2)a2+b2;               
(3)a-b.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點O是直線AB上的一點,∠BOC=40°,OD、OE分別是∠BOC、∠AOC的角平分線.
(1)求∠AOE的度數(shù);
(2)寫出圖中與∠EOC互余的角;
(3)∠COE有補角嗎?若有,請把它找出來,并說明理由.

查看答案和解析>>

同步練習冊答案