精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:

①OA=OD;②AD⊥EF;③當∠A=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2

其中正確的是(

A.②③④ B.②④ C.①③④ D.②③

【答案】A.

【解析】

試題解析:根據已知條件不能推出OA=OD,∴①錯誤;

∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,

∴DE=DF,∠AED=∠AFD=90°,

在Rt△AED和Rt△AFD中,

∴Rt△AED≌Rt△AFD(HL),

∴AE=AF,

∵AD平分∠BAC,

∴AD⊥EF,∴②正確;

∵∠BAC=90°,∠AED=∠AFD=90°,

∴四邊形AEDF是矩形,

∵AE=AF,

∴四邊形AEDF是正方形,∴③正確;

∵AE=AF,DE=DF,

∴AE2+DF2=AF2+DE2,∴④正確;

故選A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】數-3的相反數是______________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x+2y=3,xy=2,則x2+4y2=__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于拋物線y=x+12+3有以下結論:①拋物線開口向下;②對稱軸為直線x=1;③頂點坐標為(﹣1,3);x1時,yx的增大而減。渲姓_結論的個數為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點DDE∥AC,交BCE點;過E點作EF⊥DE,交AB的延長線于F點.設AD=x,△DEF的面積為y,則能大致反映yx函數關系的圖象是( )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列各式計算正確的是( 。

A. (a+b)2=a2+b2 B. aa2=a3 C. a8÷a2=a4 D. 3a2+2a2=5a4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若一個有理數的平方是正數,則這個有理數的立方是( )

A正數 B負數 C正數或負數 D整數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,E、B、A在一條直線上.請你幫李明同學計算出信號塔CD的高度(結果保留整數,≈1.7,≈1.4)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016年深圳市生產總值同比增長9%,記作+9%,而尼日利亞國內生產總值同比下滑2.24%,應記作( 。

A. 2.24% B. ﹣2.24% C. 2.24 D. ﹣2.24

查看答案和解析>>

同步練習冊答案