【題目】某農(nóng)莊計劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù),小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)關(guān)系如圖①所示,小李種植水果所得報酬z(元)與種植面積n(畝)之間的函數(shù)關(guān)系如圖②所示
(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是元,小張應(yīng)得的工資總額是元,此時,小李種植水果畝,小李應(yīng)得的報酬是元;
(2)設(shè)農(nóng)莊支付給小張和小李的總費(fèi)用為W(元),當(dāng)10<m<30時,求W與m之間的函數(shù)關(guān)系式,并求出總費(fèi)用最大為多少?
【答案】
(1)140;2800;10;1500
(2)
解:當(dāng)10<n≤30時,設(shè)z=kn+b(k≠0),
∵函數(shù)圖象經(jīng)過點(diǎn)(10,1500),(30,3900),
∴ ,
解得 ,
所以,z=120n+300(10<n≤30);
當(dāng)10<m≤30時,設(shè)y=km+b,
∵函數(shù)圖象經(jīng)過點(diǎn)(10,160),(30,120),
∴ ,
解得 ,
∴y=﹣2m+180,
∵m+n=30,
∴n=30﹣m,
∴①當(dāng)10<m≤20時,10≤n<20,
w=m(﹣2m+180)+120n+300,
=m(﹣2m+180)+120(30﹣m)+300,
=﹣2m2+60m+3900,
②當(dāng)20<m≤30時,0<n≤10,
w=m(﹣2m+180)+150n,
=m(﹣2m+180)+150(30﹣m),
=﹣2m2+30m+4500,
所以,w與m之間的函數(shù)關(guān)系式為w= .
∵w=﹣2m2+60m+3900=﹣2(x﹣15)2+4125;
w=﹣2m2+30m+4500=﹣2(x﹣ )2+4612.5,
∴w的最大值為4612.5(元).
∴總費(fèi)用最大為4612.5元.
【解析】解:(1)由圖可知,如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是 (160+120)=140元,小張應(yīng)得的工資總額是:140×20=2800元,此時,小李種植水果:30﹣20=10畝,小李應(yīng)得的報酬是1500元;所以答案是:140;2800;10;1500;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的圖象和性質(zhì)(一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D為邊AB的中點(diǎn),DE∥BC,將△ABC沿線段DE折疊,使點(diǎn)A落在點(diǎn)F處,若∠B=50°,則∠EDF=_______,∠BDF=_______,若AB=10cm,則FD= ________cm。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)= ; (2)= ; (3) ;
(4) ; (5) ; (6)a3·a3= ;
(7) (x3)5= ; (8)(-2x2y3)3= ; (9) (x-y)6÷(x-y)3= ;
(10)a2b(ab-4b2) (11)(2a-3b)(2a+5b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點(diǎn)P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).點(diǎn)D在線段PQ上,且PD=PC.
(1)求證:PQ∥AB;
(2)若點(diǎn)D在∠BAC的平分線上,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點(diǎn)E為第二象限拋物線上一動點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在拋物線的對稱軸上,若線段PA繞點(diǎn)P逆時針旋轉(zhuǎn)90°后,點(diǎn)A的對應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).
(4)連接AC,H是拋物線上一動點(diǎn),過點(diǎn)H作AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)F,使得以A,C,H,F(xiàn)為頂點(diǎn)所組成的四邊形是平行四邊形?若存在,求出滿足條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,
(1)求證:AD平分∠BAC;
(2)已知AC=20,AB=12,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=16cm,AD=6cm,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動,一直到達(dá)點(diǎn)B為止,點(diǎn)Q以2cm/s的速度向點(diǎn)D移動.
(1)P、Q兩點(diǎn)從出發(fā)開始,經(jīng)過幾秒時,四邊形PBCQ的面積為33cm2?
(2)P、Q兩點(diǎn)從出發(fā)開始,經(jīng)過幾秒時,點(diǎn)P和點(diǎn)Q的距離為10cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)這次隨機(jī)抽取的學(xué)生共有多少人?
(2)請補(bǔ)全條形統(tǒng)計圖;
(3)這個學(xué)校九年級共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com