判斷題:(-xn-yn)2=x2n+y2n(。

 

答案:F
解析:

×

 


提示:

(-xn-yn)2= x2n+y2n +2 yn xn

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012屆江蘇省泰興洋思中學(xué)九年級上學(xué)期期中數(shù)學(xué)卷 題型:解答題

我們已經(jīng)學(xué)過用方差來描述一組數(shù)據(jù)的離散程度,其實我們還可以用“平均差”來描述一組數(shù)據(jù)的離散程度。在一組數(shù)據(jù)x1,x2,…,xn中,各數(shù)據(jù)與它們的平均數(shù)的差的絕對值的平均數(shù),即T=(|x1-|+|x2-|+…+|xn-|)叫做這組數(shù)據(jù)的“平均差”,“平均差”也能描述一組數(shù)據(jù)的離散程度,“平均差”越大說明數(shù)據(jù)的離散程度越大。
請你解決下列問題:
【小題1】分別計算下列甲乙兩個樣本數(shù)據(jù)的“平均差”,并根據(jù)計算結(jié)果判斷哪個樣本波動較大。
甲:12,13,11,10,14, 乙:10,17,10,13,10
【小題2】分別計算甲、乙兩個樣本數(shù)據(jù)的方差和標(biāo)準(zhǔn)差,并根據(jù)計算結(jié)果判斷哪個樣本波動較大.
【小題3】以上的兩種方法判斷的結(jié)果是否一致?

查看答案和解析>>

同步練習(xí)冊答案