作業(yè)寶已知:AD⊥BE,垂足C是BE的中點(diǎn),AB=DE,則AB與DE平行嗎?請(qǐng)說(shuō)明理由.

解:AB∥DE,
理由是:∵C是BE的中點(diǎn),
∴BC=EC,
∵AD⊥BE,
∴∠BCA=∠ECD=90°,
∴在Rt△ACB和Rt△DCE中

∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥DE.
分析:求出EC=BC,∠BCA=∠ECD=90°,根據(jù)HL證Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,平行線的判定的應(yīng)用,關(guān)鍵是推出∠A=∠D,注意:內(nèi)錯(cuò)角相等.兩直線平行.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖1,已知矩形ABED,點(diǎn)C是邊DE的中點(diǎn),且AB=2AD.
(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)保持圖1中△ABC固定不變,繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖2中(當(dāng)垂線段AD、BE在直線MN的同側(cè)),試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明;
(3)保持圖2中△ABC固定不變,繼續(xù)繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當(dāng)垂線段AD、BE在直線MN的異側(cè)).試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知AD,BE,CF是銳角△ABC三條高線,垂心為H,則其圖中直角三角形的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•甘肅)如圖,已知AD、BE、CF分別是△ABC三邊的高,H是垂心,AD的延長(zhǎng)線交△ABC的外接圓于點(diǎn)G.求證:DH=DG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,已知矩形ABED,點(diǎn)C是邊DE的中點(diǎn),且AB=2AD.
(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)保持圖1中△ABC固定不變,繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖2中(當(dāng)垂線段AD、BE在直線MN的同側(cè)),試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明;
(3)保持圖2中△ABC固定不變,繼續(xù)繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當(dāng)垂線段AD、BE在直線MN的異側(cè)).試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山東省中考真題 題型:解答題

如圖1,已知矩形ABED,點(diǎn)C是邊DE的中點(diǎn),且AB=2AD。
(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)保持圖1中ABC固定不變,繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖2中(當(dāng)垂線段AD、BE在直線MN的同側(cè)),試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明;
(3)保持圖2中△ABC固定不變,繼續(xù)繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當(dāng)垂線段AD、BE在直線MN的異側(cè)),試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案