如圖,PA、PB是⊙O的兩條切線,A、B為切點(diǎn),∠APB=40°,C為上一點(diǎn),則∠ACB=    °.
【答案】分析:由于已知中已知角∠APB=40°,且PA、PB是圓O的切線,A、B分別為切點(diǎn),我們可以連接OA、OB,借助∠AOB為中間角,探尋中間角與已知角和未知角的關(guān)系,從而求解.
解答:解:連接OA、OB,在優(yōu)弧AB取點(diǎn)C′,連接AC′,BC′,
∵OA⊥PA,OB⊥PB,
∴∠APB=180°-∠AOB,
∵∠APB=40°,
∴∠AOB=180°-40°=140°,
∴∠AC′B=×140°=70°,
∵∠ACB+∠AC′B=180°,
∴∠ACB=110°.
故答案為110°.
點(diǎn)評(píng):本題考查了切線的性質(zhì)定理,圓周角定理,圓心角定理,四邊形內(nèi)角和定理等,我們要根據(jù)這些定理分析已知角與未知角之間的關(guān)系,進(jìn)行求解.可見(jiàn),要求一個(gè)角的大小,先要分析未知角與已知角的關(guān)系,然后再選擇合適的性質(zhì)來(lái)進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA,PB是⊙O的切線,切點(diǎn)分別為A,B,且∠APB=50°,點(diǎn)C是優(yōu)弧
AB
上的一點(diǎn),則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點(diǎn),連接AB,直線PO交AB于M.請(qǐng)你根據(jù)圓的對(duì)稱性,寫(xiě)出△PAB的三個(gè)正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點(diǎn),AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點(diǎn)分別是A、B,點(diǎn)C是⊙O上異與點(diǎn)A、B的點(diǎn),如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習(xí)冊(cè)答案