【題目】已知:如圖⊙O是以等腰三角形ABC的底邊BC為直徑的外接圓,BD平分∠ABC交⊙O于D,且BD與OA、AC分別交于點(diǎn)E、F延長BA、CD交于G.
(1)試證明:BF=CG.
(2)線段CD與BF有什么數(shù)量關(guān)系?為什么?
(3)試比較線段CD與BE的大小關(guān)系,并說明理由.
【答案】(1)見解析;(2)線段2CD=BF,理由見解析;(3)見解析.
【解析】
(1)根據(jù)圓周角定理以及全等三角形的判定得出△ABF≌△ACG即可求出答案;
(2)利用角平分線的性質(zhì)以及圓周角定理得出△BDG≌△BDC,進(jìn)而得出GD=CD,求出,即可得出答案;
(3)利用等腰三角形的性質(zhì)得出BE=EC,再利用直角三角形邊之間大小關(guān)系求出即可.
(1)∵⊙O是以等腰三角形ABC的底邊BC為直徑的外接圓,
∴AB=AC,∠BAC=90°,∠ABD=∠DCA,
∴,
∴△ABF≌△ACG,(AAS)
∴BF=CG;
(2)線段2CD=BF,
證明:∵BD平分∠ABC交⊙O于D,
∴∠GBD=∠CBD,
∵BC為直徑,
∴∠BDC=90°,
∴,
∴△BDG≌△BDC,(AAS)
∴GD=CD,
∵BF=CG,
∴,
即,
∴2CD=BF;
(3)連接EC,
∵△ABC是等腰三角形,AB=AC,
且BO=CO,
∴AO⊥BC(等腰三角形三線合一),
∴BE=EC,
∵∠EDC=90°,在△EDC中所對斜邊為EC,
∴EC>CD(直角三角形中斜邊大與直角邊長),
∴BE>CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。
A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于等腰三角形,以下說法正確的是( )
A.有一個(gè)角為40°的等腰三角形一定是銳角三角形
B.等腰三角形兩邊上的中線一定相等
C.兩個(gè)等腰三角形中,若一腰以及該腰上的高對應(yīng)相等,則這兩個(gè)等腰三角形全等
D.等腰三角形兩底角的平分線的交點(diǎn)到三邊距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且∠B= 60°.過點(diǎn)C作圓的切線l與直徑AD的延長線交于點(diǎn)E,AF⊥l,垂足為F,CG⊥AD,垂足為G.
(1)求證:△ACF≌△ACG;
(2)若AF= 4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解答下列問題.
如圖1,已知△ABC中,AD 為中線.延長AD至點(diǎn)E,使 DE=AD.在△ADC和△EDB中,AD=DE,∠ADC=∠EDB,BD=CD,所以,△ACD≌△EBD,進(jìn)一步可得到AC=BE,AC//BE等結(jié)論.
在已知三角形的中線時(shí),我們經(jīng)常用“倍長中線”的輔助線來構(gòu)造全等三角形,并進(jìn)一步解決一些相關(guān)的計(jì)算或證明題.
解決問題:如圖2,在△ABC中,AD是三角形的中線,點(diǎn)F為AD上一點(diǎn),且BF=AC,連結(jié)并延長BF交AC于點(diǎn)E,求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A開始沿AB邊運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)B開始沿BC邊運(yùn)動(dòng),速度為4cm/s;如果P、Q兩動(dòng)點(diǎn)同時(shí)運(yùn)動(dòng),那么何時(shí)△QBP與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙爽(約公元182~250年),我國歷史上著名的數(shù)學(xué)家與天文學(xué)家,他詳細(xì)解釋了《周髀算經(jīng)》中勾股定理,將勾股定理表述為:“勾股各自乘,并之為弦實(shí).開方除之,即弦.”又給出了新的證明方法“趙爽弦圖”,巧妙地利用平面解析幾何面積法證明了勾股定理.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,直角三角形較長直角邊長為4,則大正方形的面積為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度.
(2)求DE的長度.
(3)BE與DF垂直嗎? 說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交
AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①≌;②;③∠GDE=45°;④
DG=DE在以上4個(gè)結(jié)論中,正確的共有( )個(gè)
A. 1個(gè) B. 2 個(gè) C. 3 個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com