【題目】如圖,在矩形ABCD中,AB=6BC=8,點(diǎn)O為對(duì)角線BD的中點(diǎn),點(diǎn)E為邊AD上一點(diǎn),連接OE,將DOE沿OE翻折得到OEF,若OFAD于點(diǎn)G,則OE=______

【答案】

【解析】

由矩形的性質(zhì)和勾股定理得出BD==10,得出OD=5,由折疊的性質(zhì)得:∠F=ADB,OF=OD=5,證出OGABD的中位線,GEF∽△ABD,得出OG=AB=3=,求出GE=,在RtOGE中,由勾股定理即可得出結(jié)果.

解:∵四邊形ABCD是矩形,

∴∠A=90°,AD=BC=8,

ABAD,BD==10,

∵點(diǎn)O為對(duì)角線BD的中點(diǎn),

OD=5,

由折疊的性質(zhì)得:∠F=ADBOF=OD=5,

OFAD,∴OFAB,∠OGE=FGE=90°=A

OGABD的中位線,GEF∽△ABD,

OG=AB=3,=

FG=OF-OG=2,=

GE=,

RtOGE中,由勾股定理得:OE===;

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線有兩個(gè)不同的交點(diǎn).下列結(jié)論:①;②當(dāng)時(shí),有最小值;③方程有兩個(gè)不等實(shí)根;④若連接這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn),恰好是一個(gè)等腰直角三角形,則;其中正確的結(jié)論的個(gè)數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠BAC

1)如圖,在平面內(nèi)任取一點(diǎn)O;

2)以點(diǎn)O為圓心,OA為半徑作圓,交射線AB于點(diǎn)D,交射線AC于點(diǎn)E

3)連接DE,過點(diǎn)O作線段DE的垂線交⊙O于點(diǎn)P

4)連接APDPPE.根據(jù)以上作圖過程及所作圖形,下列四個(gè)結(jié)論中:

ADE是⊙O的內(nèi)接三角形; ;

DE=2PE AP平分∠BAC

所有正確結(jié)論的序號(hào)是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平而直角坐標(biāo)系中,函數(shù)(其中,)的圖象經(jīng)過平行四邊形的頂點(diǎn),函數(shù)(其中)的圖象經(jīng)過頂點(diǎn),點(diǎn)軸上,若點(diǎn)的橫坐標(biāo)為1,的面積為

1)求的值:

2)求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展以“學(xué)習(xí)朱子文化,弘揚(yáng)理學(xué)思想”為主題的讀書月活動(dòng),并向?qū)W生征集讀后感,學(xué)校將收到的讀后感篇數(shù)按年級(jí)進(jìn)行統(tǒng)計(jì),繪制了以下兩幅統(tǒng)計(jì)圖(不完整)

據(jù)圖中提供的信息完成以下問題

(1)扇形統(tǒng)計(jì)圖中“八年級(jí)”對(duì)應(yīng)的圓心角是   °,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)經(jīng)過評(píng)審,全校有4篇讀后感榮獲特等獎(jiǎng),其中有一篇來自七年級(jí),學(xué)校準(zhǔn)備從特等獎(jiǎng)讀后感中任選兩篇在校廣播電臺(tái)上播出,請(qǐng)利用畫樹狀圖或列表的方法求出七年級(jí)特等獎(jiǎng)讀后感被校廣播電臺(tái)播出的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=k1x+,且k1k2≠0,自變量x與函數(shù)值y滿足以下表格:

x

……

-4

-3

-2

-1

-

1

2

3

4

……

y

……

-3

-2

-1

0

1

-1

0

1

m

n

……

1)根據(jù)表格直接寫出yx的函數(shù)表達(dá)式及自變量x的取值范圍______

2)補(bǔ)全上面表格:m=______,n=______;在如圖所示的平面直角坐標(biāo)系中,請(qǐng)根據(jù)表格中的數(shù)據(jù)補(bǔ)全y關(guān)于x的函數(shù)圖象;

3)結(jié)合函數(shù)圖象,解決下列問題:

①寫出函數(shù)y的一條性質(zhì):______

②當(dāng)函數(shù)值y時(shí),x的取值范圍是______;

③當(dāng)函數(shù)值y=-x時(shí),結(jié)合圖象請(qǐng)估算x的值為______(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖形如圖所示,下列說法正確的有(

快車追上慢車需6小時(shí);慢車比快車早出發(fā)2小時(shí);快車速度為46km/h;④慢車速度為46km/h AB兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時(shí)

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),二次函數(shù)與一次函數(shù)a,b為常數(shù),且).

1)若y1,y2的圖象都經(jīng)過點(diǎn)(2,3),求y1y2的表達(dá)式;

2)當(dāng)y2經(jīng)過點(diǎn)時(shí),y1也過AB兩點(diǎn):

m的值;

分別在y1y2的圖象上,實(shí)數(shù)t使得當(dāng)時(shí),”,試求t的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示AB為O的一條弦,點(diǎn)C為劣弧AB的中點(diǎn),E為優(yōu)弧AB上一點(diǎn),點(diǎn)F在AE的延長線上,且BE=EF,線段CE交弦AB于點(diǎn)D.

求證:CEBF;

若BD=2,且EA:EB:EC=3:1:,求BCD的面積(注:根據(jù)圓的對(duì)稱性可知OCAB).

查看答案和解析>>

同步練習(xí)冊(cè)答案