3.下列長(zhǎng)度的三條線段能組成鈍角三角形的是( 。
A.3,4,4B.3,4,5C.3,4,6D.3,4,7

分析 在能夠組成三角形的條件下,如果滿足較小兩邊平方的和等于最大邊的平方是直角三角形;滿足較小兩邊平方的和大于最大邊的平方是銳角三角形;滿足較小兩邊平方的和小于最大邊的平方是鈍角三角形,依此求解即可.

解答 解:A、因?yàn)?2+42>42,所以三條線段能組銳角三角形,不符合題意;
B、因?yàn)?2+42=52,所以三條線段能組成直角三角形,不符合題意;
C、因?yàn)?+4>6,且32+42<62,所以三條線段能組成鈍角三角形,符合題意;
D、因?yàn)?+4=7,所以三條線段不能組成三角形,不符合題意.
故選:C.

點(diǎn)評(píng) 本題考查了勾股定理的逆定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.掌握組成鈍角三角形的條件是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知BD是△ABC的角平分線,點(diǎn)E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對(duì)角線BD向點(diǎn)D勻速運(yùn)動(dòng),速度為4cm/s,過點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),速度為3m/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為t(單位:s)(0<t<$\frac{8}{5}$).
(1)如圖1,連接DQ平分∠BDC時(shí),t的值為1;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請(qǐng)你繼續(xù)進(jìn)行探究,并解答下列問題:
①證明:在運(yùn)動(dòng)過程中,點(diǎn)O始終在QM所在直線的左側(cè);
②如圖3,在運(yùn)動(dòng)過程中,當(dāng)QM與⊙O相切時(shí),求t的值;并判斷此時(shí)PM與⊙O是否也相切?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.計(jì)算$\frac{x+1}{x}$-$\frac{1}{x}$的結(jié)果為( 。
A.1B.xC.$\frac{1}{x}$D.$\frac{x+2}{x}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在平面直角坐標(biāo)系中,已知A(2,3),B(0,1),C(3,1),若線段AC與BD互相平分,則點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為(-5,-3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算:(-1)3+|${-\frac{1}{2}}$|-(-$\frac{3}{2}$)0×(-$\frac{2}{3}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為了解市民對(duì)全市創(chuàng)衛(wèi)工作的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在全市甲、乙兩個(gè)區(qū)內(nèi)進(jìn)行了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中信息,解決下列問題:
(1)求此次調(diào)查中接受調(diào)查的人數(shù).
(2)求此次調(diào)查中結(jié)果為非常滿意的人數(shù).
(3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為不滿意的4位市民中隨機(jī)選擇2位進(jìn)行回訪,已知4位市民中有2位來(lái)自甲區(qū),另2位來(lái)自乙區(qū),請(qǐng)用列表或用畫樹狀圖的方法求出選擇的市民均來(lái)自甲區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知多項(xiàng)式ax+b與2x2-x+1的乘積展開式中不含x的一次項(xiàng),且常數(shù)項(xiàng)為-2,則ab的值為( 。
A.-4B.$\frac{1}{4}$C.-$\frac{1}{4}$D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,在菱形ABCD中,AB=5,AC=8,點(diǎn)P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作EF⊥AC分別交AD、AB于點(diǎn)E、F,將△AEF沿EF折疊,點(diǎn)A落在點(diǎn)A′處,當(dāng)△A′BC是等腰三角形時(shí),AP的長(zhǎng)為$\frac{3}{2}$或$\frac{39}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案