【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=BCD=900,連結AC,若AC=10,則四邊形ABCD的面積為_____

【答案】50

【解析】

作輔助線;證明ABM≌△ADN,得到AMAN,ABMADN的面積相等;求出正方形AMCN的面積即可解決問題.

解:如圖,作AMBC、ANCD,交CD的延長線于點N;


∵∠BAD=∠BCD90°
∴四邊形AMCN為矩形,∠MAN90°;
∵∠BAD90°,
∴∠BAM=∠DAN
ABMADN中,
BAM=∠DAN
AMB=∠AND
ABAD,
∴△ABM≌△ADNAAS),
∴設AMAN=m

ABMADN的面積相等;
∴四邊形ABCD的面積=正方形AMCN的面積;
由勾股定理得:AC2AM2MC2,而AC10;
2m2100,m250,
故答案為:50

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】科技館是少年兒童節(jié)假日游玩的樂園.

如圖所示,圖中點的橫坐標x表示科技館從830開門后經(jīng)過的時間(分鐘),縱坐標y表示到達科技館的總人數(shù).圖中曲線對應的函數(shù)解析式為y=1000之后來的游客較少可忽略不計.

1)請寫出圖中曲線對應的函數(shù)解析式;

2)為保證科技館內(nèi)游客的游玩質量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從1030開始到1200館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】藏族小伙小游到批發(fā)市場購買牛肉,已知牦牛肉和黃牛肉的單價之和為每千克44元,小游準備購買牦牛肉和黃牛肉總共不超過120千克,其中黃牛肉至少購買30千克,牦牛肉的數(shù)量不少于黃牛肉的2倍,粗心的小游在做預算時將牦牛肉和黃牛肉的價格弄對換了,結果實際購買兩種牛肉的總價比預算多了224元,若牦牛肉、黃牛肉的單價和數(shù)量均為整數(shù),則小游實際購買這兩種牛肉最多需要花費______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點的坐標是,過軸于,在軸正半軸上截取,連接

1)求點的坐標及的解析式;

2)過,求證:;

3關于軸的對稱點為,在上取點,連接,動點沿運動,上的運動速度每秒1個單位長度,上運動速度每秒2個單位長度,當在何處時,運動的時間最短?請求出的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC與DEF都是等腰直角三角形,ACB=EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明BOF≌△COD,則BF=CD

解決問題

1將圖中的RtDEF繞點O旋轉得到圖,猜想此時線段BF與CD的數(shù)量關系,并證明你的結論;

2如圖,若ABC與DEF都是等邊三角形,AB、EF的中點均為O,上述1中的結論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關系;

3如圖,若ABC與DEF都是等腰三角形,AB、EF的中點均為0,且頂角ACB=EDF=α,請直接寫出的值用含α的式子表示出來

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

(1)在給定的直角坐標系中,畫出這個函數(shù)的圖象

(2)根據(jù)圖象,寫出當y<0,x的取值范圍;

(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是反比例函數(shù)y=圖象上的兩點,過點AAC⊥y軸,垂足為CACOB于點D.若DOB的中點,△AOD的面積為3,則k的值為( )

A. 3 B. 6 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發(fā),則△BPQ的面積y與運動時間t(t≤4)的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】發(fā)現(xiàn):已知△ABC中,AE△ABC的角平分線,∠B72°,∠C36°

1)如圖1,若AD⊥BC于點D,求∠DAE的度數(shù);

2)如圖2,若PAE上一個動點(P不與AE重合),且PF⊥BC于點F時,∠EPF   °

3)探究:如圖2△ABC中,已知∠B,∠C均為一般銳角,∠B∠C,AE△ABC的角平分線,若P為線段AE上一個動點(P不與E重合),且PF⊥BC于點F時,請寫出∠EPF∠B,∠C的關系,并說明理由.

查看答案和解析>>

同步練習冊答案