【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位,ABC的三個頂點都在格點上,請按要求畫圖和填空:

1)在網(wǎng)格中畫出ABC向下平移5個單位得到的A1B1C1;

2)在網(wǎng)格中畫出A1B1C1關(guān)于直線l對稱的A2B2C2

3)在網(wǎng)格中畫出將ABC繞點A按逆時針方向旋轉(zhuǎn)90度得到的AB3C3;

4)在圖中探究并求得ABC的面積= (直接寫出結(jié)果).

【答案】1)見解析;(2)見解析;(3)見解析;(45

【解析】

1)根據(jù)平移規(guī)則,向下平移5個單位,畫出圖像即可;

2)根據(jù)軸對稱的性質(zhì),即可畫出圖像;

3)根據(jù)旋轉(zhuǎn)的性質(zhì),即可畫出圖形;

4)根據(jù)間接法求面積,用矩形面積減去三個小三角形面積即可.

解:作圖如下:

1)如圖,畫出A1B1C1

2)如圖,畫出A2B2C2

3)如圖,畫出AB3C3;

4

=

=.

故答案為:5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明同學在完成第10章的學習后,遇到了一些問題,請你幫助他.

1)圖1中,當,試說明

2)圖2中,若,則嗎?請說明理由.

3)圖3中,,若,,,,則______(直接寫出結(jié)果,用含x,y,z的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B(3,3)在雙曲線 (x>0)上,點D在雙曲線 (x<0)上,點A和點C分別在x軸,y軸的正半軸上,且點A,B,C,D構(gòu)成的四邊形為正方形.

1k的值;

3求點A的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于對位似圖形的4個表述中:

相似圖形一定是位似圖形,位似圖形一定是相似圖形;

位似圖形一定有位似中心;

如果兩個圖形是相似圖形,且每組對應(yīng)點的連線所在的直線都經(jīng)過同一個點,那么,這兩個圖形是位似圖形;

位似圖形上任意兩點與位似中心的距離之比等于位似比.

正確的個數(shù)  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在(

A.在∠A、∠B兩內(nèi)角平分線的交點處

B.ACBC兩邊垂直平分線的交點處

C.AC、BC兩邊高線的交點處

D.ACBC兩邊中線的交點處

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在平面直角坐標系中,圖形 W在坐標軸上的投影長度定義如下設(shè)點 P( , ) ,Q( , ) 是圖形 W 上的任意兩點,的最大值為 m ,

圖形 W x 軸上的投影長度為 lx m ;的最大值為 n ,則圖形 W y 軸上的

投影長度為 ly n .如圖 1,圖形 W x 軸上的投影長度為 lx 4 ; y 軸上的 投影長度為 ly 3 .

(1)已知點 A(1, 2) , B(2, 3) , C (3,1) ,如圖 2 所示若圖形 W 為四邊形 OABC ,

lx ly ;

(2)已知點 C (, 0) , D 在直線 y x 1(x 0) 若圖形 W OCD , lx ly

求點 D 的坐標;

(3 )若圖形 W 為函數(shù) y x 2(a x b) 的圖象,其中 (0 a b) ,當該圖形滿足

lx ly 1請直接寫出 a 的取值范圍.

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B是⊙O上兩點,若四邊形ACBO是菱形,⊙O的半徑為r,則點A與點B之間的距離為( )

A. r B. r C. r D. 2r

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,A、B兩城市相距100km.現(xiàn)計劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測量,森林保護中心P在A城市的北偏東30°和B城市的北偏西45°的方向上.已知森林保護區(qū)的范圍在以P點為圓心,50km為半徑的圓形區(qū)域內(nèi).請問計劃修筑的這條高速公路會不會穿越保護區(qū).為什么?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.在不等邊ABC中,PMAB,垂足為MPNAC,垂足為N,且PM=PN,QAC上,PQ=QA,下列結(jié)論.AN=AM,②QPAM,③△BMP≌△QNP,其中正確的是(

A.①②③B.①②C.②③D.

查看答案和解析>>

同步練習冊答案