在平面直角坐標(biāo)系中,點(diǎn),,…和,,,…分別在直線軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2),那么點(diǎn)的縱坐標(biāo)是_    _____.

解析試題分析:利用待定系數(shù)法求一次函數(shù)解析式求出直線的解析式,再求出直線與x軸、y軸的交點(diǎn)坐標(biāo),求出直線與x軸的夾角的正切值,分別過等腰直角三角形的直角頂點(diǎn)向x軸作垂線,然后根據(jù)等腰直角三角形斜邊上的高線與中線重合并且等于斜邊的一半,利用正切值列式依次求出三角形的斜邊上的高線,即可得到各點(diǎn)的縱坐標(biāo)的規(guī)律.
試題解析:如圖:

∵A1(1,1),A2,)在直線y=kx+b上,
,
解得.
∴直線解析式為
如圖,設(shè)直線與x軸、y軸的交點(diǎn)坐標(biāo)分別為N、M,
當(dāng)x=0時(shí),y=,
當(dāng)y=0時(shí),,解得x=-4,
∴點(diǎn)M、N的坐標(biāo)分別為M(0,),N(-4,0),
∴tan∠MNO=
作A1C1⊥x軸與點(diǎn)C1,A2C2⊥x軸與點(diǎn)C2,A3C3⊥x軸與點(diǎn)C3,
∵A1(1,1),A2),
∴OB2=OB1+B1B2=2×1+2×=2+3=5,
tan∠MNO=,
∵△B2A3B3是等腰直角三角形,
∴A3C3=B2C3,
∴A3C3=,
同理可求,第四個(gè)等腰直角三角形A4C4=
依此類推,點(diǎn)An的縱坐標(biāo)是
考點(diǎn):一次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新人教版(2012) 七年級(jí)上 題型:

如果|a+1|+(b-2)2=0,求(ab)39a34的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 七年級(jí)上 題型:

填空:

(1)(27)÷9________;(2)()÷________;

(3)1÷(9)________(4)0÷(7)________;

(5)________;(6)0.25÷________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知直線y=kx+b經(jīng)過兩點(diǎn)(3,6)和(﹣1,﹣2),則直線的解析式為 _________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

寫出一個(gè)y隨x增大而增大的一次函數(shù)的解析式: _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

一次函數(shù)的圖象過點(diǎn)(0,1),且函數(shù)y的值隨自變量x的增大而減小,請(qǐng)寫出一個(gè)符合條件的函數(shù)解析式            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在一次函數(shù)y=kx+2中,若y隨x的增大而增大,則它的圖象不經(jīng)過第____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

新定義:[a,b,c]為函數(shù)y=ax2+bx+c (a,b,c為實(shí)數(shù))的“關(guān)聯(lián)數(shù)”.若“關(guān)聯(lián)數(shù)”為[m-2,m,1]的函數(shù)為一次函數(shù),則m的值為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

(2013年四川南充3分) 如圖1,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P,點(diǎn)Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BE→ED→DC 運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s,設(shè)P,Q出發(fā)t秒時(shí),△BPQ的面積為ycm,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時(shí),;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結(jié)論個(gè)數(shù)為【   】

A.4 B.3 C.2 D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案