【題目】在銳角ABC中,AB=4,BC=5,ACB=45°,將ABC繞點(diǎn)B按逆時針方向旋轉(zhuǎn),得到△DBE

(1)當(dāng)旋轉(zhuǎn)成如圖,點(diǎn)E在線段CA的延長線上時,則CED的度數(shù)是   度;

(2)當(dāng)旋轉(zhuǎn)成如圖,連接AD、CE,若ABD的面積為4,求CBE的面積;

(3)點(diǎn)M為線段AB的中點(diǎn),點(diǎn)P是線段AC上一動點(diǎn),在ABC繞點(diǎn)B按逆時針方向旋轉(zhuǎn)過程中,點(diǎn)P的對應(yīng)點(diǎn)P′,連接MP′,如圖,直接寫出線段MP′長度的最大值和最小值.

【答案】(1)90;(2)S△CBE=;(3)線段MP'的最大值為7,最小值為﹣2.

【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知DEC=45°,再由等邊對等角得∠BEC=45°,則∠CED=90°;

2)由△ABC≌△DBE得出BA=BD,BC=BE進(jìn)而得出,證明△ABD∽△CBE,根據(jù)面積比等于相似比的平方求出△CBE的面積;

3)作輔助線當(dāng)點(diǎn)PF處時BP最小BG最小,MP'最小當(dāng)點(diǎn)P在點(diǎn)C處時,BP最大BH最大,MP'最大,代入計算即可得出結(jié)論.

試題解析:(1)由旋轉(zhuǎn)得DEB=ACB=45°,BC=BE∴∠ACB=BEC=45°,∴∠CED=90°.故答案為:90;

2∵△ABC≌△DBE,BA=BD,BC=BEABC=DBE,∵∠ABD=CBE,∴△ABD∽△CBE=(2=SABD=4,SCBE=;

3MAB的中點(diǎn),BM=AB=2如圖③,過點(diǎn)BBFAC,F為垂足∵△ABC為銳角三角形∴點(diǎn)F在線段AC上.在RtBCF,BF=BC×sin45°=,B為圓心,BF為半徑畫圓交ABG,BP'有最小值BG,MP'的最小值為MG=BGBM=2,B為圓心,BC為半徑畫圓交AB的延長線于HBP'有最大值BH.此時MP'的最大值為BM+BH=2+5=7,∴線段MP'的最大值為7最小值為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AB的垂直平分線MNAC于點(diǎn)D,交AB于點(diǎn)E

1)若∠A40°,求∠DBC的度數(shù);

2)若AE6,△CBD的周長為20,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】莊子說:“一尺之椎,日取其半,萬世不竭”.這句話(文字語言)表達(dá)了古人將事物無限分割的思想,用圖形語言表示為圖1,按此圖分割的方法,可得到一個等式(符號語言):1=

圖2也是一種無限分割:在△ABC中,∠C=90°,∠B=30°,過點(diǎn)C作CC1⊥AB于點(diǎn)C1,再過點(diǎn)C1作C1C2⊥BC于點(diǎn)C2,又過點(diǎn)C2作C2C3⊥AB于點(diǎn)C3,如此無限繼續(xù)下去,則可將利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假設(shè)AC=2,這些三角形的面積和可以得到一個等式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星光廚具店購進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售其進(jìn)價與售價如表

進(jìn)價(元/臺)

售價(元/臺)

電飯煲

200

250

電壓鍋

160

200

1)一季度,廚具店購進(jìn)這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?

2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不大于電壓鍋的,請你通過計算判斷,如何進(jìn)貨廚具店賺錢最多?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點(diǎn)B關(guān)于AD的對稱點(diǎn)為B′,連接AB′CB′,CB′ADF點(diǎn).

1)如圖1,∠ABC=90°,求證:FCB′的中點(diǎn);

2)小宇通過觀察、實(shí)驗(yàn)、提出猜想:如圖2,在點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)的過程中,點(diǎn)F始終為CB′的中點(diǎn).小宇把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:過點(diǎn)B′B′GCDADG點(diǎn),只需證三角形全等;

想法2:連接BB′ADH點(diǎn),只需證HBB′的中點(diǎn);

想法3:連接BB′,BF,只需證∠B′BC=90°

請你參考上面的想法,證明FCB′的中點(diǎn).(一種方法即可)

3)如圖3,當(dāng)∠ABC=135°時,AB′,CD的延長線相交于點(diǎn)E,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如圖所示的程序計算.若開始輸入的的值為18,我們發(fā)現(xiàn)第1次得到的結(jié)果為9,第2次得到的結(jié)果為14,第3次得到的結(jié)果為7.……,請你探索第2019次得到的結(jié)果為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

1)在“平行四邊形、矩形、菱形,正方形”中, 一定是等角線四邊形(填寫圖形名稱);

2)若M、NP、Q分別是等角線四邊形ABCD四邊AB、BCCD、DA的中點(diǎn),當(dāng)對角線AC、BD還要滿足 時,四邊形MNPQ是正方形;

3)如圖2,已知△ABC中,∠ABC90°,AB4,BC3,D為平面內(nèi)一點(diǎn).若四邊形ABCD是等角線四邊形,且ADBD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E、F分別是AB、CD上的點(diǎn),點(diǎn)GBC的延長線上一點(diǎn),且∠B=DCG=D 則下列判斷錯誤的是(

A.BEF=EFDB.A=BCFC.AEF=EBCD.BEF+EFC=180°

查看答案和解析>>

同步練習(xí)冊答案