精英家教網 > 初中數學 > 題目詳情

.(本題12分)

已知拋物線y=ax2+bx+c經過P(,3),E(,0)及原點O(0,0)

(1)求拋物線的解析式;

(2)過P點作平行于x軸的直線PC交y軸于C點,在拋物線對稱軸右側

且位于直線PC下方的拋物線上,任取一點Q,過點Q作直線QA平行于y

軸交x軸于A點,交直線PC于B點,直線QA與直線PC及兩坐標軸圍成矩形OABC(如圖).是否存在點Q,使得△OPC與△PQB相似?若存在,求出Q點的坐標;若不存在,請說明理由;

(3)如果符合(2)中的Q點在x軸的上方,連接OQ,矩形OABC內的四個三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關系,為什么?

 

【答案】

 

 

 解:(1)由已知可得:

解之得,a=-,b=,c=0.

因而得,拋物線的解析式為:y=-x2+x.

(2)存在.

設Q點的坐標為(m,n),則,

要使△OCP∽△PBQ,

則有,即,

解之得,m1=3,m2=

當m1=時,n=2,即為P點,

所以得Q(2,2)

要使△OCP∽△QPB,則有,

解之得,m1=3,m2=,

當m=時,即為P點,

當m1=3時,n=-3,

所以得Q(3,-3).

故存在兩個Q點使得△OCP與△PBQ相似.Q點的坐標為(2,2),(3,-3).

(3)在Rt△OCP中,

因為tan∠COP=

所以∠COP=30度.

當Q點的坐標為(2,2)時,∠BPQ=∠COP=30度.

所以∠OPQ=∠OCP=∠B=∠QAO=90度.

因此,△OPC,△PQB,△OPQ,△OAQ都是直角三角形.

又在Rt△OAQ中,

因為tan∠QOA=

所以∠QOA=30度.

即有∠POQ=∠QOA=∠QPB=∠COP=30度.

所以△OPC∽△PQB∽△OQP∽△OQA,

又因為QP⊥OP,QA⊥OA∠POQ=∠AOQ=30°,

所以△OQA≌△OQP.

【解析】此題是二次函數的綜合題,知識點較多,有一定難度。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(11·丹東)(本題12分)已知:正方形ABCD.

(1)如圖1,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數量關系和位置關系分別是什么?請直接寫出結論.

(2)如圖2,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BE、DF,此時(1)中結論是否成立,如果成立,請證明;如果不成立,請說明理由.

(3)如圖3,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BE、DF,猜想當AE與AD滿足什么數量關系時,直線DF垂直平分BE.請直接寫出結論.

(4)如圖4,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結論.

 

查看答案和解析>>

科目:初中數學 來源:2011年江蘇省沭陽縣中學中考模擬考試數學卷.doc 題型:解答題

﹣(本題12分)已知二次函數y=x2bxcx軸交于A(-1,0)、B(1,0)兩點.
(1)求這個二次函數的關系式;
(2)若有一半徑為r的⊙P,且圓心P在拋物線上運動,當⊙P與兩坐標軸都相切時,求半徑r的值.
(3)半徑為1的⊙P在拋物線上,當點P的縱坐標在什么范圍內取值時,⊙P與y軸相離、相交?

查看答案和解析>>

科目:初中數學 來源:2012屆浙江省新昌縣實驗中學九年級上學期期中階段性測試數學卷 題型:解答題

(本題12分)已知二次函數的圖象經過點(0,-3),且頂點坐標為(-1,-4).
(1)求該二次函數的解析式;
(2)設該二次函數的圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源:2013屆浙江建德李家鎮(zhèn)初級中學九年級上學期期末考試數學試卷(帶解析) 題型:解答題

(本題12分)已知兩直線分別經過點A(3,0),點B(-1,0),并且當兩直線同時相交于y負半軸的點C時,恰好有,經過點A、B、C的拋物線的對稱軸與直線交于點D,如圖所示。

(1)求拋物線的函數解析式;
(2)當直線繞點C順時針旋轉一個銳角時,它與拋物線的另一個交點為P(x,y),求四邊形APCB面積S關于x的函數解析式,并求S的最大值;
(3)當直線繞點C旋轉時,它與拋物線的另一個交點為P,請找出使△PCD為等腰三角形的點P,并求出點P的坐標。

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(山東濟南卷)數學解析版 題型:解答題

(11·丹東)(本題12分)已知:正方形ABCD.

(1)如圖1,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數量關系和位置關系分別是什么?請直接寫出結論.

(2)如圖2,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BE、DF,此時(1)中結論是否成立,如果成立,請證明;如果不成立,請說明理由.

(3)如圖3,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BE、DF,猜想當AE與AD滿足什么數量關系時,直線DF垂直平分BE.請直接寫出結論.

(4)如圖4,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結論.

 

查看答案和解析>>

同步練習冊答案