【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達(dá)圖書館恰好用了35分鐘.兩人之間的距離y(m)與小雪離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時,小雪離圖書館的距離為____米.
【答案】1500.
【解析】
分析圖象:點A表示出發(fā)前兩人相距4500米,即家和圖書館相距4500米;線段AB表示小雪已跑步出發(fā),兩人相距距離逐漸減小,到5分鐘時相距3500米,即小雪5分鐘走了1000米,可求小雪跑步的速度;線段BC表示小松5分鐘后開始出發(fā);點C表示兩人相距1000米時,小雪改為步行,可設(shè)小雪跑步a分鐘,則后面(35﹣a)分鐘步行,列方程可求出a,然后用4500減1000再減去小雪走的路程可求出此時小松騎車走的路程,即求出小松的速度;點D表示兩人相遇;線段DE表示兩人相遇后繼續(xù)往前走,點E表示小松到達(dá)家,可用路程除以小松的速度得到此時為第幾分鐘;線段EF表示小雪繼續(xù)往圖書館走;點F表示35分鐘時小雪到達(dá)圖書館.
由圖象可得:家和圖書館相距4500米,小雪的跑步速度為:(4500﹣3500)÷5=200(米/分鐘),
∴小雪步行的速度為:200×=100(米/分鐘),
設(shè)小雪在第a分鐘時改為步行,列方程得:
200a+100(35﹣a)=4500
解得:a=10
∴小松騎車速度為:(4500﹣200×10﹣1000)÷(10﹣5)=300(米/分鐘)
∴小松到家時的時間為第:4500÷300+5=20(分鐘)
此時小雪離圖書館還有15分鐘路程,100×15=1500(米)
故答案為1500.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動.當(dāng)滾動一周回到原位置時,點C運動的路徑長為__ _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸分別交于點,與y軸交于點C,頂點為D.
(1)求拋物線的解析式和頂點D的坐標(biāo);
(2)動點以相同的速度從點O同時出發(fā),分別在線段上向點方向運動,過點P作x軸的垂線,交拋物線于點E.
①當(dāng)四邊形為矩形時,求點E的坐標(biāo);
②過點E作于點M,連接.設(shè)的面積為,的面積為,當(dāng)將的面積分成1:3兩部分時,請直接寫出的值;
③連接,請直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,與軸交于點,,交y軸于點,頂點為.
(1)求拋物線解析式;
(2)在第一象限內(nèi)的拋物線上求點,使 ,求點的坐標(biāo);
(3)是第一象限內(nèi)拋物線上一點,是線段上一點,點 在點右側(cè),且滿足,當(dāng)為何值時,滿足條件的點只有一個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE⊥BC交AD于點E,連接BE,點F是BE上一點,連接CF.
(1)如圖1,若∠ECD=30°,BC=BF=4,DC=2,求EF的長;
(2)如圖2,若BC=EC,過點E作EM⊥CF,交CF延長線于點M,延長ME、CD相交于點G,連接BG交CM于點N,若CM=MG,求證:EG=2MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明袋子中裝有三只大小、質(zhì)地都相同的小球,球面上分別標(biāo)有數(shù)字1、﹣2、3,攪勻后先從中任意摸出一個小球(不放回),記下數(shù)字作為點A的橫坐標(biāo),再從余下的兩個小球中任意摸出一個小球,記下數(shù)字作為點A的縱坐標(biāo).
(1)用畫樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求點A落在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級學(xué)生體育測試成績情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖,按B、C、D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分~74分;D級:60分以下)
(1)求出D級學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;
(2)求出扇形統(tǒng)計圖(圖2)中C級所在的扇形圓心角的度數(shù);
(3)若該校九年級學(xué)生共有500人,請你估計這次考試中A級和B級的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BD的垂直平分線分別交AB、CD、BD于E、F、O,連接DE、BF.
(1)求證:四邊形BEDF是菱形;
(2)若AB=8cm,BC=4cm,求四邊形DEBF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com