(8分)如圖,在梯形ABCD中,DC∥AB,DE∥BC,DE=AD。
(1)請(qǐng)問(wèn)此時(shí)ABCD為等腰梯形嗎?說(shuō)明你的理由;
(2)若∠B=60°,DC=4,AB=10,求梯形ABCD的周長(zhǎng)。
(1)此時(shí)ABCD為等腰梯形;(2)26
解析試題分析:
(1) 證明:∵DE∥BC
∴∠B=∠DEA
∵DE=AD
∴∠A=∠DEA
∴∠A=∠B
∴ABCD為等腰梯形
(2)∵DC∥AB,DE∥BC
∴四邊形DCBE是平行四邊形,所以DC=BE=4
∵AB=10
∴AE=6
∵∠B=60°
∴∠A=∠B=60°
又DE=AD
∴△DAE是等邊三角形
即DA=CB=6
∴梯形ABCD的周長(zhǎng)為4+6+6+10=26
考點(diǎn):四邊形性質(zhì)的應(yīng)用
點(diǎn)評(píng):此種試題較為簡(jiǎn)單,要求學(xué)生對(duì)于四邊形性質(zhì)要靈活變動(dòng),多運(yùn)用圖像觀察。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分6分)如圖,在梯形ABCD中,AD∥BC,BD=CD,AB<CD,且∠ABC為
銳角,AD=4,BC=12,點(diǎn)E為BC上一動(dòng)點(diǎn)。試求:當(dāng)CE為何值時(shí),四邊形ABED是等腰梯
形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省南京市九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題7分)如圖,在梯形ABCD中,AD∥BC,M,N分別是AD,BC的中點(diǎn),E,F(xiàn)分別是BM,CM的中點(diǎn).
1.(1)證明四邊形MENF是平行四邊形;
2.(2)若使四邊形MENF是菱形,還需在梯形ABCD中添加什么條件?請(qǐng)你寫(xiě)出這個(gè)條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省無(wú)錫市南長(zhǎng)區(qū)八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題
(本題5分)如圖,在梯形ABCD中,AD∥BC,AB=DC=AD,AC=BC. 求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為x(x>0).
⑴△EFG的邊長(zhǎng)是____(用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時(shí),y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com