【題目】已知二次函數(shù)yax2+4x+c,當(dāng)x=﹣2時(shí),y=﹣5;當(dāng)x1時(shí),y4

(1)求這個(gè)二次函數(shù)表達(dá)式.

(2)此函數(shù)圖象與x軸交于點(diǎn)A,B(AB的左邊),與y軸交于點(diǎn)C,求點(diǎn)A,B,C點(diǎn)的坐標(biāo)及△ABC的面積.

(3)該函數(shù)值y能否取到﹣6?為什么?

【答案】(1)yx2+4x1;(2);(3)函數(shù)值y不能取到﹣6;理由見解析.

【解析】

(1)x=﹣2時(shí),y=﹣5;x1時(shí),y4代入yax2+4x+c,求得a、c的值即可求得;

(2)y0,解方程求得A、B點(diǎn)的坐標(biāo),令x0,求得y=﹣1,得到C點(diǎn)的坐標(biāo),然后根據(jù)三角形面積公式即可求得ABC的面積;

(3)(1)中求得的解析式化成頂點(diǎn)式,求得函數(shù)y的最小值為﹣5,故函數(shù)值y不能取到﹣6

解:(1)x=﹣2時(shí),y=﹣5;x1時(shí),y4代入yax2+4x+c,

解得,

∴這個(gè)二次函數(shù)表達(dá)式為yx2+4x1;

(2)y0,則x2+4x10,

解得x=﹣,

A(20),B(2+,0),

x0,則y=﹣1

C(0,﹣1),

∴△ABC的面積:ABOC(2++2+)×1;

(3)yx2+4x1(x+2)25,

∴函數(shù)y的最小值為﹣5,

∴函數(shù)值y不能取到﹣6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】民俗村的開發(fā)和建設(shè)帶動(dòng)了旅游業(yè)的發(fā)展,某市有A、B、C、DE五個(gè)民俗旅游村及其它景點(diǎn),該市旅游部門繪制了2018長假期間民俗村旅游情況統(tǒng)計(jì)圖如下:

根據(jù)以上信息解答:

12018期間,該市五個(gè)旅游村及其它景點(diǎn)共接待游客   萬人,扇形統(tǒng)計(jì)圖中D民俗村所對(duì)應(yīng)的圓心角的度數(shù)是   ,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)根裾近幾年到該市旅游人數(shù)增長趨勢(shì),預(yù)計(jì)2019節(jié)將有70萬游客選擇該市旅游,請(qǐng)估計(jì)有多少萬人會(huì)選擇去E民俗村旅游?

3)甲、乙兩個(gè)旅行團(tuán)在AC、D三個(gè)民俗村中,同時(shí)選擇去同一個(gè)民俗村的概率是多少?請(qǐng)用畫樹狀圖或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦AB=1,點(diǎn)CAB上移動(dòng),連結(jié)OC,過點(diǎn)CCDOC交⊙O于點(diǎn)D,則CD的最大值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖120194月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個(gè)數(shù)(如圖2),下列表示ab,cd之間關(guān)系的式子中不正確的是( )

A. adbcB. a+c+2b+dC. a+b+14c+dD. a+db+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GEBC,垂足為點(diǎn)E,GFCD,垂足為點(diǎn)F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運(yùn)用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CGAD于點(diǎn)H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B=AFE,EA是∠BEF的平分線,求證:

(1)ABE≌△AFE;

(2)FAD=CDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加2018年的全國初中生數(shù)學(xué)競賽,喬老師利用寒假把甲、乙兩名同學(xué)的前五個(gè)學(xué)期的數(shù)學(xué)成績(單位:分)統(tǒng)計(jì)成下表:

第一學(xué)期

第二學(xué)期

第三學(xué)期

第四學(xué)期

第五學(xué)期

75

80

85

90

95

95

87

88

80

75

(1)分別求出甲、乙兩名同學(xué)前五個(gè)學(xué)期的數(shù)學(xué)平均成績;

(2)在圖中分別畫出甲、乙兩名同學(xué)前五個(gè)學(xué)期的數(shù)學(xué)成績的折線統(tǒng)計(jì)圖;

(3)如果你是喬老師,你認(rèn)為應(yīng)該派哪名學(xué)生參加數(shù)學(xué)競賽?請(qǐng)簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,DBDA,∠ADB的角平分線與AB相交于點(diǎn)F,與CB的延長線相交于點(diǎn)E連接AE

1)求證:四邊形AEBD是菱形.

2)若四邊形ABCD是菱形,DC10,則菱形AEBD的面積是   .(直接填空,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為⊙O的直徑,AC與⊙O相切于點(diǎn)A,連接BC交圓于點(diǎn)D,過點(diǎn)D作⊙O的切線交ACE

1)求證:AECE

2)如圖,在弧BD上任取一點(diǎn)F連接AF,弦GFAB交于H,與BC交于M,求證:∠FAB+FBM=∠EDC

3)如圖,在(2)的條件下,當(dāng)GHFHHMMF時(shí),tanABC,DE時(shí),N為圓上一點(diǎn),連接FNABL,滿足∠NFH+CAF=∠AHG,求LN的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案