分析 (1)連結OD、AD,如圖,先利用圓周角定理得到∠ADB=90°,則根據等腰三角形的性質得BD=CD,再證明OD為△ABC的中位線得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根據切線的判定定理可判斷DH為⊙O的切線;
(2)連結DE,如圖,有圓內接四邊形的性質得∠DEC=∠B,再證明∠DEC=∠C,然后根據等腰三角形的性質得到CH=EH;
(3)利用余弦的定義,在Rt△ADC中可計算出AC=5$\sqrt{5}$,在Rt△CDH中可計算出CH=$\sqrt{5}$,則CE=2CH=2$\sqrt{5}$,
然后計算AC-CE即可得到AE的長.
解答 (1)解:DH與⊙O相切.理由如下:
連結OD、AD,如圖,
∵AB為直徑,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
而AO=BO,
∴OD為△ABC的中位線,
∴OD∥AC,
∵DH⊥AC,
∴OD⊥DH,
∴DH為⊙O的切線;
(2)證明:連結DE,如圖,
∵四邊形ABDE為⊙O的內接四邊形,
∴∠DEC=∠B,
∵AB=AC,
∴∠B=∠C,
∴∠DEC=∠C,
∵DH⊥CE,
∴CH=EH,即H為CE的中點;
(3)解:在Rt△ADC中,CD=$\frac{1}{2}$BC=5,
∵cosC=$\frac{CD}{AC}$=$\frac{\sqrt{5}}{5}$,
∴AC=5$\sqrt{5}$,
在Rt△CDH中,∵cosC=$\frac{CH}{CD}$=$\frac{\sqrt{5}}{5}$,
∴CH=$\sqrt{5}$,
∴CE=2CH=2$\sqrt{5}$,
∴AE=AC-CE=5$\sqrt{5}$-2$\sqrt{5}$=3$\sqrt{5}$.
點評 本題考查了圓的綜合題:熟練掌握圓周角定理、切線的判定定理和等腰三角形的判定與性質;會利用三角函數的定義解直角三角形.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 45° | B. | 30° | C. | 50° | D. | 55° |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com