【題目】如圖,ADABC的角平分線,過點DAB,AC兩邊作垂線,垂足分別為E,F(xiàn),那么下列結(jié)論中不一定正確的是(  )

A. BD=CD B. DE=DF C. AE=AF D. ADE=ADF

【答案】A

【解析】

根據(jù)角平分線上的點到角的兩邊距離相等可得DE=DF,然后利用“HL”證明RtADERtADF全等,根據(jù)全等三角形對應邊相等可得AE=AF,ADE=ADF.

解:如圖,∵ADABC的角平分線,DEAB,DFAC,
DE=DF,
RtADERtADF中,

RtADERtADF(HL),
AE=AF,ADE=ADF,即只有AB=AC時,BD=CD.
綜上所述,結(jié)論錯誤的是BD=CD.
故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小河邊有兩個村莊A、B,要在河邊建一自來水廠向A村與B村供水。

(1)若要使水廠到A、B村的距離相等,則應選擇在哪建廠? 

(2)若要使水廠到A、B村的水管最省料,應建在什么地方?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某科技有限公司準備購進AB兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元,購進A種機器人3個和B種機器人2個共需14萬元,請解答下列問題:

(1)求A、B兩種機器人每個的進價;

(2)已知該公司購買B種機器人的個數(shù)比購買A種機器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,CFABF,BEACE,CFBE交于點D.有下列結(jié)論:

①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上;④CFAB的垂直平分線.以上結(jié)論正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,E是 的中點,連接BE、CE,則∠ABE=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在路邊安裝路燈,燈柱BC高15m,與燈桿AB的夾角ABC為120°.路燈采用錐形燈罩,照射范圍DE長為18.9m,從D、E兩處測得路燈A的仰角分別為∠ADE=80.5°,∠AED=45°.求燈桿AB的長度.(參考數(shù)據(jù):cos80.5°≈0.2,tan80.5°≈6.0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組對邊平行,另一組對邊相等且不平行的四邊形叫做等腰梯形.
(1)類比研究
我們在學完平行四邊形后,知道可以從對稱性、邊、角和對角線四個角度對四邊形進行研究,完成表.

四邊形

對稱性

對角線

平行
四邊形

兩組對邊分別平行,兩組對邊分別相等.

兩組對角
分別相等.

對角線互相平分.

等腰
梯形

軸對稱圖形,過平行的一組對邊中點的直線是它的對稱軸.

一組對邊平行,另一組對邊相等.


(2)演繹論證
證明等腰梯形有關角和對角線的性質(zhì).
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是對角線.
求證:
證明:
揭示關系
我們可以用圖來揭示三角形和一些特殊三角形之間的關系.

(3)請用類似的方法揭示四邊形、對角線相等的四邊形、平行四邊形、矩形以及等腰梯形之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:(a+b)2﹣b(2a+b)

(2)解不等式:(3x+4)(3x-4)<9(x-2)(x+3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(10,0),(0,4),點DOA的中點,點PBC上運動,當ODP是腰長為5的等腰三角形時,點P的坐標為______

查看答案和解析>>

同步練習冊答案