(本小題10分)在平面直角坐標(biāo)系中.已知O坐標(biāo)原點.點A(3.0),B(0,4).以點A為旋轉(zhuǎn)中心,把△ABO順時針旋轉(zhuǎn),得△ACD.記旋轉(zhuǎn)轉(zhuǎn)角為α.∠ABO為β.
(I) 如圖①,當(dāng)旋轉(zhuǎn)后點D恰好落在AB邊上時.求點D的坐標(biāo);
(Ⅱ) 如圖②,當(dāng)旋轉(zhuǎn)后滿足BC∥x軸時.求α與β之聞的數(shù)量關(guān)系;
(Ⅲ) 當(dāng)旋轉(zhuǎn)后滿足∠AOD=β時.求直線CD的解析式(直接寫出即如果即可),
解:(I)∵點A(3,0).B(0,4).得0A=3,OB=4.
∴在Rt△ABO中.由勾股定理.得AB=5,
根據(jù)題意,有DA=OA=3
如圖①.過點D作DM⊥x軸于點M,

則MD∥OB.
∴△ADM∽△ABO。有,


又OM=OA-AM,得OM=
∴點D的坐標(biāo)為(
(Ⅱ)如圖②.由己知,得∠CAB=α,AC=AB,

∴∠ABC=∠ACB.
∴在△ABC中,由∠ABC+∠ACB+∠CAB=180°,
得α=180°—2∠ABC,.
又∵BC∥x軸,得∠OBC=90°,
有∠ABC=90°—∠ABO=90°—β
∴α=2β.
(Ⅲ)直線CD的解析式為,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法,你認為正確的是(  )
A.兩個形狀和大小都相同的圖形可以看成其中一個是另一個平移得到的。
B.由平移得到的兩個圖形的形狀和大小相同。
C.邊長相等的兩個正方形一定可看成是由平移得到的。
D.圖形平移后對應(yīng)線段不可能在同一直線上。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC
與△A1B1C1重疊部分面積為2,則BB1       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•桂林)如圖,將邊長為a的正六邊形A1A2A3A4A5A6在直線l上由圖1的位置按順時針方向向右作無滑動滾動,當(dāng)A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的長為(  )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請在如圖的正方形網(wǎng)格紙中,以O為位似中心,將△ABC放大為原來的2倍.(畫一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形不是軸對稱圖形的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將邊長為的正六邊形A1 A2 A3 A4 A5 A6在直線上由圖1的位置按順時針
方向向右作無滑動滾動,當(dāng)A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的
長為(   ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題


在如圖所示的平面直角坐標(biāo)系中,△OAB的三個頂點坐標(biāo)分別為O(0,0),A(1,-3),B(3,-2).

(1)將△OAB繞原點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA’ B’;
(2)求出點B到點B’ 所走過的路徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分為8分)如圖,一任意四邊形用三種不同的方法把它分割成六塊、六塊、四塊,請根據(jù)圖形分割的意圖,將它們分別重新拼成大小不同的長方形。

查看答案和解析>>

同步練習(xí)冊答案