如圖①,直線AB與x軸負半軸、y軸正半軸分別交于A、B兩點,OA、OB的長度分別為a和b,且滿足.
(1)判斷△AOB的形狀.
(2)如圖②,正比例函數(shù)的圖象與直線AB交于點Q,過A、B兩點分別作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的長.
(3)如圖③,E為AB上一動點,以AE為斜邊作等腰直角△ADE,P為BE的中點,連結(jié)PD、PO,試問:線段PD、PO是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?寫出你的結(jié)論并證明.
(1)等腰直角三角形
    ∴

∵∠AOB=90° ∴△AOB為等腰直角三角形;
(2)∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°
∴∠MAO=∠MOB
∵AM⊥OQ,BN⊥OQ ∴∠AMO=∠BNO=90°
在△MAO和△BON中
∴△MAO≌△NOB
∴OM=BN,AM=ON,OM=BN
∴MN=ON-OM=AM-BN=5 ;
(3)PO=PD且PO⊥PD
如圖,延長DP到點C,使DP=PC,連結(jié)OP、OD、OC、BC
在△DEP和△CBP
∴△DEP≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°
在△OAD和△OBC ∴△OAD≌△OBC
∴OD=OC,∠AOD=∠COB
∴△DOC為等腰直角三角形
∴PO=PD,且PO⊥PD.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,A點坐標為(0,4),C點坐標為(10,0).
(1)如圖①,若直線AB∥OC,AB上有一動點P,當P點的坐標為
(5,4)
時,有PO=PC;
(2)如圖②,若直線AB與OC不平行,在過點A的直線y=-x+4上是否存在點P,使∠OPC=90°,若有這樣的點P,求出它的坐標.若沒有,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,A點的坐標為(0,4),C點的坐標為(10,0).
精英家教網(wǎng)
(1)如圖①,若直線AB∥OC,AB上有一動點P,當P點的坐標為
 
時,有PO=PC;
(2)如圖②,若直線AB與OC不平行,則在過點A的直線y=-x+4上是否存在點P,
使∠OPC=90°,若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點P在直線y=kx+4上移動時,只存在一個點P使得∠OPC=90°,試求出此時y=kx+4中k的值是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)點A,B,C,D的坐標如圖,求直線AB與直線CD的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,△OAB中,OA=OB,⊙O經(jīng)過AB的中點C,且與OA、OB分別交于點D、E.

(1)如圖①,判斷直線AB與⊙O的位置關(guān)系并說明理由;
(2)如圖②,連接CD、CE,當△OAB滿足什么條件時,四邊形ODCE為菱形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖2,直線AB與CD相交于一點O,OE平分∠COB,且∠AOE=140°,則∠AOC=(  )

查看答案和解析>>

同步練習冊答案