【題目】如圖,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B(0,3)和點(diǎn)A(3,0).
(1)求拋物線的函數(shù)表達(dá)式和直線的函數(shù)表達(dá)式;
(2)若點(diǎn)P是拋物線落在第一象限,連接PA,PB,求△PAB的面積S的最大值及此時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)y=-x2+2x+3;y=-x+3(2)當(dāng)a=時(shí),S△PAB有最大值,最大值為,此時(shí)點(diǎn)P坐標(biāo)為(,)
【解析】
(1)由A、B的坐標(biāo),利用待定系數(shù)法即可求得函數(shù)解析式;
(2)過(guò)P點(diǎn)作PN⊥OA于N,交直線B于M,設(shè)點(diǎn)P橫坐標(biāo)為a,則可分別表示出P、M的縱坐標(biāo),從而表示出PM的長(zhǎng),根據(jù)S△PAB=S△PAM+S△PBM得到S=PMOA=-(a-)2+,利用二次函數(shù)的性質(zhì)可求得其最大值,及此時(shí)的點(diǎn)P的坐標(biāo).
(1)∵拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B(0,3)和點(diǎn)A(3,0),
∴,解得,
∴拋物線的函數(shù)表達(dá)式是y=-x2+2x+3;
設(shè)直線AB:y=kx+m,
根據(jù)題意得,解得,
∴直線AB的函數(shù)表達(dá)式是y=-x+3;
(2)如圖,過(guò)P點(diǎn)作PN⊥OA于N,交直線B于M,設(shè)點(diǎn)P橫坐標(biāo)為a,則點(diǎn)P的坐標(biāo)為(a,-a2+2a+3),點(diǎn)M的坐標(biāo)是(a,-a+3),
又點(diǎn)P,M在第一象限,
∴PM=-a2+2a+3-(-a+3)=-a2+3a,
∴S△PAB=S△PAM+S△PBM=PMOA=(-a2+3a)×3=-(a-)2+,
∴當(dāng)a=時(shí),S△PAB有最大值,最大值為,
此時(shí)點(diǎn)P坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,延長(zhǎng)矩形ABCD的邊BC至點(diǎn)E,使CE=BD,連結(jié)AE,如果∠ABD=60°,那么∠BAE的度數(shù)是( 。
A. 40°B. 55°C. 75°D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,,點(diǎn),分別在、上,,,相交于點(diǎn),若圖中陰影部分的面積與正方形的面積之比為,則的周長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示.在Rt△ABC中,CD是斜邊上的中線,CE是高.已知AB=10cm,DE=2.5cm,則∠BDC=____________度,S△BCD=______cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(m,5),B(n,2)是拋物線C1:上的兩點(diǎn),將拋物線C1向左平移,得到拋物線C2,點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A',B'.若曲線段AB掃過(guò)的陰影部分面積為9,則拋物線C2的解析式是______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P, Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).以AP為一邊向上作正方形APDE,過(guò)點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為,正方形APDE和梯形BCFQ重合部分的面積為cm.
(1)當(dāng)=_____s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)為多少時(shí),點(diǎn)D在QF上;
(3)是否存在某一時(shí)刻,使得正方形APDE的面積被直線QF平分?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC為邊向外作正方形,其面積分別為S1、S2、S3,若S1=2,S3=4,則S2的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com