已知:關(guān)于x一元二次方程x2-2x+m=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍是________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、已知:關(guān)于x的一元二次方程ax2+bx+c=-3的一個(gè)根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點(diǎn)坐標(biāo)為
(2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個(gè)實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時(shí),y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問:是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,二次函數(shù)圖象的頂點(diǎn)為,與軸交于、兩點(diǎn)(點(diǎn)右側(cè)),點(diǎn)關(guān)于直線:對稱.

(1)求、兩點(diǎn)坐標(biāo),并證明點(diǎn)在直線上;

(2)求二次函數(shù)解析式;

(3)過點(diǎn)作直線交直線點(diǎn),、分別為直線和直線上的兩個(gè)動點(diǎn),連接、,求和的最小值.

【解析】(1)根據(jù)一元二次方程求得A點(diǎn)坐標(biāo),代入直線求證,(2)通過點(diǎn)H、B關(guān)于直線L對稱,求得H的坐標(biāo),從而解出二次函數(shù)的解析式,(3)先求出HN+MN的最小值是MB, 再求出BM+MK的最小值是BQ,即和的最小值

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市新區(qū)九年級下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題

已知如圖,二次函數(shù)圖象的頂點(diǎn)為,與軸交于、兩點(diǎn)(點(diǎn)右側(cè)),點(diǎn)關(guān)于直線:對稱.

(1)求、兩點(diǎn)坐標(biāo),并證明點(diǎn)在直線上;

(2)求二次函數(shù)解析式;

(3)過點(diǎn)作直線交直線點(diǎn),、分別為直線和直線上的兩個(gè)動點(diǎn),連接、、,求和的最小值.

【解析】(1)根據(jù)一元二次方程求得A點(diǎn)坐標(biāo),代入直線求證,(2)通過點(diǎn)H、B關(guān)于直線L對稱,求得H的坐標(biāo),從而解出二次函數(shù)的解析式,(3)先求出HN+MN的最小值是MB, 再求出BM+MK的最小值是BQ,即和的最小值

 

查看答案和解析>>

同步練習(xí)冊答案