A
分析:本題較復雜,設(shè)AC、AB與⊙O的切點分別為R、M,連接OR、OM,過O作OK⊥BC于K;由于△POR∽△PCB,可得出關(guān)于PR,OR,PC,BC的比例關(guān)系式,由此可求出PR與半徑的比例關(guān)系.由此可表示出OK,AP的長;在Rt△OBK中,已知了OK的表達式,BK=BC-r,而OB可在Rt△OBM中用勾股定理求得.由此可根據(jù)勾股定理求出半徑r的長.
解答:
解:連接OR、OM,
則OR⊥AC,OM⊥AB;過O作OK⊥BC于K,
設(shè)⊙O的半徑為r,
易知:△POR∽△PBC,
∴
,
∵BC=
=6cm,
∴
=
,即:PR=
,
AP=CP=2×2=4cm,
在Rt△BOK與Rt△BMO中,根據(jù)勾股定理,得:
(6-r)
2+(4-
r)
2=BO
2=[10-(8-4+
)]
2+r
2解得:r=
cm.
故本題選A.
點評:此題雖是動點問題,但和動點無直接關(guān)系,實質(zhì)是運用切線的性質(zhì)和勾股定理得到一個關(guān)于半徑的方程,然后求解.