王亮同學善于改進學習方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習.假設他用于解題的時間x(單位:分鐘)與學習收益量y的關系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量y的關系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.

(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學習收益量y與用于回顧反思的時間x之間的函數(shù)關系式;
(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?
(學習收益總量=解題的學習收益量+回顧反思的學習收益量)
【答案】分析:(1)設y=kx代入(2,4)可得k與y的值.x∈(15,30)
(2)設y=a(x-5)2+25,代(0,0)進可得a=-1.則可以求出y的解.但要注意的是要分情況分條件.
(3)根據(jù)題意可得z=-(x-4)2+76可推出z隨著x的增大而減。
解答:解:(1)設y=kx,把(2,4)代入,
得k=2.
∴y=2x.(1分)
自變量x的取值范圍是:
15≤x≤30.(2分)

(2)當0≤x≤5時,設y=a(x-5)2+25,(3分)
把(0,0)代入,得
25a+25=0,a=-1.
∴y=-(x-5)2+25=-x2+10x.(5分)
當5≤x≤15時,y=25(6分)


(3)設王亮用于回顧反思的時間為x(0≤x≤15)分鐘,學習效益總量為Z,
則他用于解題的時間為(30-x)分鐘.
當0≤x≤5時,Z=-x2+10x+2(30-x)=-x2+8x+60=-(x-4)2+76.(7分)
∴當x=4時,Z最大=76.(8分)
當5≤x≤15時,Z=25+2(30-x)=-2x+85.(9分)
∵Z隨x的增大而減小,
∴當x=5時,Z最大=75
綜合所述,當x=4時,Z最大=76,此時30-x=26.(10分)
即王亮用于解題的時間為(26分)鐘,用于回顧反思的時間為(4分)鐘時,學習收益總量最大.(11分)
點評:求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法.運用二次函數(shù)解決實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

王亮同學善于改進學習方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習.假設他用于解題的時間x(單位:分鐘)與學習收益量y的關系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量y的關系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.
精英家教網(wǎng)
(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學習收益量y與用于回顧反思的時間x之間的函數(shù)關系式;
(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?
(學習收益總量=解題的學習收益量+回顧反思的學習收益量)

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

王亮同學善于改進學習方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習。假設他用于解題的時間x(單位:分鐘)與學習收益量y的關系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量y的關系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間。
(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數(shù)關系式,并寫出自變量x的取值范圍;(2)求王亮回顧反思的學習收益量y與用于回顧反思的時間x之間的函數(shù)關系式;
(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?
(學習收益總量=解題的學習收益量+回顧反思的學習收益量)

查看答案和解析>>

科目:初中數(shù)學 來源:第34章《二次函數(shù)》中考題集(24):34.4 二次函數(shù)的應用(解析版) 題型:解答題

王亮同學善于改進學習方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習.假設他用于解題的時間x(單位:分鐘)與學習收益量y的關系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量y的關系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.

(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學習收益量y與用于回顧反思的時間x之間的函數(shù)關系式;
(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?
(學習收益總量=解題的學習收益量+回顧反思的學習收益量)

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(22):2.4 二次函數(shù)的應用(解析版) 題型:解答題

王亮同學善于改進學習方法,他發(fā)現(xiàn)對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習.假設他用于解題的時間x(單位:分鐘)與學習收益量y的關系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量y的關系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.

(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學習收益量y與用于回顧反思的時間x之間的函數(shù)關系式;
(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?
(學習收益總量=解題的學習收益量+回顧反思的學習收益量)

查看答案和解析>>

同步練習冊答案