【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,則∠B=( )
A. 40° B. 30° C. 25° D. 22.5
【答案】B
【解析】
利用全等直角三角形的判定定理HL證得Rt△ACD≌Rt△AED,則對應(yīng)角∠ADC=∠ADE;然后根據(jù)已知條件“DE平分∠ADB”、平角的定義證得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的兩個銳角互余的性質(zhì)求得∠B=30°.
∵在△ABC中,∠C=90°,AD是角平分線,DE⊥AB于E,
∴CD=ED,
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴∠ADC=∠ADE(全等三角形的對應(yīng)角相等).
∵∠ADC+∠ADE+∠EDB=180°,DE平分∠ADB,
∴∠ADC=∠ADE=∠EDB=60°.
∴∠B+∠EDB=90°,
∴∠B=30°.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線交于、兩點,過作軸交拋物線于點,直線交軸于點.
求、、三點的坐標;
若點是線段上的一個動點,過作軸交拋物線于點,連接、,當(dāng)時,求的值;
如圖,連接,及,設(shè)點是的中點,點是線段上任意一點,將沿邊翻折得到,求當(dāng)為何值時,與重疊部分的面積是面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(-5,5),(-2,3).
(1)請在圖中的網(wǎng)格平面內(nèi)畫出平面直角坐標系xOy;
(2)請畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出頂點A1,B1,C1的坐標
(3)請在x軸上求作一點P,使△PB1C的周長最小.請標出點P的位置(保留作圖痕跡,不需說明作圖方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知一次函數(shù)的圖像與x軸交于點,與軸交于點.
(1)求直線的解析式;
(2)在坐標系中能否找到點,使得且?如果能,求出滿足條件的點的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,點B,C分別在直線和上,點A,D是x軸上兩點.
(1)若此正方形邊長為2,k=_______.
(2)若此正方形邊長為a,k的值是否會發(fā)生變化?若不會發(fā)生變化,請說明理由;若會發(fā)生變化,求出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點A,PB與AC的延長線交于點M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當(dāng)OB=3,PA=6時,求MB,MC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,AD是⊙O的切線交BC的延長線于D,AB交OC于E.
(1)求證:AD∥OC;
(2)若AE=2,CE=2.求⊙O的半徑和線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜邊OB=4,將Rt△OAB繞點O順時針旋轉(zhuǎn)60°,如題圖1,連接BC.
(1)填空:∠OBC= °;
(2)如圖1,連接AC,作OP⊥AC,垂足為P,求OP的長度;
(3)如圖2,點M,N同時從點O出發(fā),在△OCB邊上運動,M沿O→C→B路徑勻速運動,N沿O→B→C路徑勻速運動,當(dāng)兩點相遇時運動停止,已知點M的運動速度為1.5單位/秒,點N的運動速度為1單位/秒,設(shè)運動時間為x秒,△OMN的面積為y,求當(dāng)x為何值時y取得最大值?最大值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com