【題目】如圖所示,OP平分∠AOB,PAOA,PBOB,垂足為A,B,連接AB,下列結(jié)論中不一定成立的是(

A.PA=PBB.PO平分∠APBC.OA=OBD.AB平分OP

【答案】D

【解析】

根據(jù)角平分線上的點到角的兩邊距離相等可得PA=PB,再利用“HL”證明△AOP和△BOP全等,根據(jù)全等三角形對應(yīng)角相等可得∠AOP=BOP,全等三角形對應(yīng)邊相等可得OA=OB

OP平分∠AOB,PAOA,PBOB,∴PA=PB,故A選項正確;

在△AOP和△BOP中,∵,∴△AOP≌△BOPHL),∴∠APO=BPO,OA=OB,故B,C選項正確;

由等腰三角形三線合一的性質(zhì),OP垂直平分AB,但AB不一定垂直平分OP,故D選項錯誤,即不一定成立的是選項D

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-x4的圖象與x軸和y軸分別交于點AB,再將AOB沿直線CD對折,使點A與點B重合、直線CDx軸交于點C,與AB交于點D

(1)點A的坐標(biāo)為_________,點B的坐標(biāo)為_________;

(2)在直線AB上是否存在點P使得△APO的面積為12?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由;

(3)OC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個數(shù)能表示成某個整數(shù)的平方的形式,則稱這個數(shù)為完全平方數(shù),完全平方數(shù)是非負(fù)數(shù).例如:002,112422,932,16422552,3662,121112….

1)若28+210+2n是完全平方數(shù),求n的值.

2)若一個正整數(shù),它加上61是一個完全平方數(shù),當(dāng)減去11是另一個完全平方數(shù),寫出所有符合的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCCEF均為等腰直角三角形,∠ABC=∠CFE90°,連接AE,點GAE中點,連接BGGF

1)如圖1,當(dāng)CEFE、F落在BCAC邊上時,探究FGBG的關(guān)系;

2)如圖2,當(dāng)CEFF落在BC邊上時,探究FGBG的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2,AC=AD,增加下列條件:①AB=AE;BC=DE;③∠C=D;④∠B=E,其中能使△ABC≌△AED的條件是______________.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅旗鎮(zhèn)鎮(zhèn)政府大力發(fā)動農(nóng)戶擴大柑橘和蔬菜種植面積,取得了較好的經(jīng)濟效益.今年紅旗鎮(zhèn)柑橘和蔬菜的收成比去年一共增加了80噸,其中柑橘的收成比去年增加了20%,蔬菜的收成比去年增加了30%,從而使今年的收成共達到420噸.

1)紅旗鎮(zhèn)去年柑橘和蔬菜的收成各多少噸?

2)由于今年大豐收,紅旗鎮(zhèn)政府計劃用甲、乙兩種貨車共33輛將柑橘和蔬菜全部一次性運到外地去銷售.已知一輛甲種貨車最多可裝13噸柑橘和3噸蔬菜;一輛乙種貨車最多可裝柑橘和蔬菜各6噸,安排甲、乙兩種貨車共有幾種方案?

3)若甲種貨車的運費為每輛600元,乙種貨車的運費為每輛500元,在(2)的情況下,如何安排運費最少,最少為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點A4n),與x軸相交于點B

1)填空:n的值為 ,k的值為 ;

2)以AB為邊作菱形ABCD,使點Cx軸正半軸上,點D在第一象限,求點D的坐標(biāo);

3)觀察反比函數(shù)y=的圖象,當(dāng)y≥-2時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=90°,點D為線段BC上的一個動點,以AD為直角邊向右作等腰RtADF,使AD=AF,∠DAF=90°
1)如圖1,連結(jié)CF,求證:△ABD≌△ACF;
2)如圖2,過A點作△ADF的對稱軸交BC于點E,猜想BD2DE2,CE2關(guān)系,并證明你的結(jié)論;

查看答案和解析>>

同步練習(xí)冊答案