精英家教網(wǎng)如圖,菱形ABCD中,∠A=110°,E,F(xiàn)分別是邊AB和BC的中點,EG⊥CD于點G,則∠FGC=
 
分析:延長GF交AB的延長線于點P.根據(jù)已知可得∠EBF,∠BEF,∠BFE的度數(shù),再根據(jù)余角的性質可得到∠EGF的度數(shù),從而不難求得∠FGC的度數(shù).
解答:解:延長GF,交AB的延長線于點P.精英家教網(wǎng)
∵F為BC的中點,
∴BF=CF,
∵四邊形ABCD為菱形,
∴AB∥DC,
∴∠PBF=∠GCF,∠BFP=∠CFG,
在△BPF與△CGF中,
∠PBF=∠GCF
BF=CF
∠BFP=∠CFG

∴△BPF≌△CGF,
∴GF=PF,
∴F為PG中點.
又∵由題可知,∠BEG=90°,
∴EF=
1
2
PG,
∵GF=
1
2
PG,
∴EF=GF,
∴∠FEG=∠EGF,
∵∠BEG=∠EGC=90°,
∴∠BEG-∠FEG=∠EGC-∠EGF,即∠BEF=∠FGC,
∵四邊形ABCD為菱形,
∴AB=BC,∠ABC=180°-∠A=70°,
∵E,F(xiàn)分別為AB,BC的中點,
∴BE=BF,∠BEF=∠BFE=
1
2
(180°-70°)=55°,
∴∠FGC=55°.
故答案為55°.
點評:本題主要考查了菱形的性質和全等三角形的判定等知識點,靈活應用菱形的性質是解決問題的關鍵,此題難度一般,作出輔助線也很關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點,且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點E,F(xiàn)分別為BC和CD的中點,求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動點P從點B出發(fā),以每秒1個單位長度的速度沿B→C→D向終點D運動.同時動點Q從點A出發(fā),以相同的速度沿A→D→B向終點B運動,運動的時間為x秒,當點P到達點D時,點P、Q同時停止運動,設△APQ的面積為y,則反映y與x的函數(shù)關系的圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點,P是對角線AC上的一個動點,若AB長為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:菱形ABCD中,E是AB的中點,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對角線BD的長;
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長.
(2)求菱形的面積.

查看答案和解析>>

同步練習冊答案