【題目】把正整數(shù)1,2,3,4,……,2009排列成如圖所示的一個表
(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是 , , 。
(2)當被框住的4個數(shù)之和等于416時,x的值是多少?
(3)被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由。
【答案】(1)從小到大依次是x+1、x+7、x+8。(2)100;(3)不能,理由見解析.
【解析】試題分析:(1)根據(jù)上下兩個數(shù)相差7,左右兩個數(shù)相差1,分別表示出結果即可;
(2)利用四個數(shù)的和為416列出方程解答即可;
(3)利用四個數(shù)的和為622列出方程解答,求得整數(shù)解可以,否則不可能.
試題解析:(1)從小到大依次是x+1、x+7、x+8。
(2)由題意可得:
x+(x+1)+(x+7)+(x+8)=416
4x+16=416
x=100
所以,x的值為100。
(3)不能。理由如下:
x+(x+1)+(x+7)+(x+8)=622
4x+16=622
x=
因為x為正整數(shù),所以框出的四個數(shù)的和不能為622。
科目:初中數(shù)學 來源: 題型:
【題目】對于分式 ,我們把分式 叫做 的伴隨分式. 若分式 ,分式 是 的伴隨分式,分式 是 的伴隨分式,分式 是 的伴隨分式,以此類推…,則分式 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】P為正整數(shù),現(xiàn)規(guī)定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,則正整數(shù)m= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知動點P以每秒2cm的速度沿圖甲的邊框按從BCDEFA的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖乙中的圖象表示.若AB=6cm,試回答下列問題:
(1)圖甲中的BC長是多少?
(2)圖乙中的a是多少?
(3)圖甲中的圖形面積的多少?
(4)圖乙中的b是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=a(x﹣m)2+n與y軸交于點A,它的頂點為點B,點A、B關于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x﹣2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x﹣m)2+n(m>0)的伴隨直線是y=x﹣3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x﹣m)2+n的伴隨直線是y=﹣2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(用含b的代數(shù)式表示);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鍛煉身體,強健體魄,小明和小強約定每天在兩家之間往返長跑20分鐘. 兩家正好在同一直線道路邊上,某天小明和小強從各自的家門口同時出發(fā),沿兩家之間的直線道路按各自的速度勻速往返跑步,已知小明的速度大于小強的速度. 在跑步的過程中,小明和小強兩人之間的距離y(米)與他們出發(fā)的時間x(分鐘)之間的關系如圖所示,在他們3次相遇中,離小明家最近那次相遇時距小明家____米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com