精英家教網 > 初中數學 > 題目詳情
(2008•朝陽區(qū)二模)已知:如圖,AB為⊙O的直徑,AC、BC為弦,點P為上一點,AB=10,AC:BC=3:4.
(1)當點P與點C關于直線AB對稱時(如圖1),求PC的長;
(2)當點P為的中點時(如圖2),求PC的長.

【答案】分析:(1)根據題意求得PC⊥AB,且CD=DP,然后根據勾股定理求出CD的長;
(2)過點B作BE⊥PC于點E,連接PB,由(1)問求出AC和BC的長,然后根據題干條件求出EP的長,即可求出PC.
解答:解:(1)在⊙O中,如圖
∵AB是直徑,
∴∠ACB=90゜.
∵點P與點C關于AB對稱,
∴PC⊥AB,且CD=DP.
∴由三角形面積得:CD•AB=AC•BC.
∵AB=10,AC:BC=3:4,
∴由勾股定理求得AC=6,BC=8.
∴CD=,
∴PC=2CD=9.6;

(2)過點B作BE⊥PC于點E,連接PB,
由(1)得AC=6,BC=8.
∵點P為 的中點,∴∠ACP=∠BCP=45°.
在Rt△BEC中,可求得CE=BE=
∵∠A=∠P,∠ACB=∠BEC=90°,
∴tan∠P=tan∠A.


∴PC=CE+EP=
點評:本題主要考查圓周角定理、勾股定理和垂徑定理的知識點,解答本題的突破口利用好圓周角定理和垂徑定理,此題難度一般.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2008•朝陽區(qū)二模)如圖,△AOC在平面直角坐標系中,∠AOC=90°,且O為坐標原點,點A、C分別在坐標軸上,AO=4,OC=3,將△AOC繞點C按逆時針方向旋轉,旋轉后的三角形記為△CA′O′.
(1)當CA邊落在y軸上(其中旋轉角為銳角)時,一條拋物線經過A、C兩點且與直線AA′相交于x軸下方一點D,如果S△AOD=9,求這條拋物線的解析式;
(2)繼續(xù)旋轉△CA′O′,當以CA′為直徑的⊙P與(1)中拋物線的對稱軸相切時,圓心P是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年重慶市綦江縣趕水鎮(zhèn)中中考數學模擬試卷(一)(解析版) 題型:解答題

(2008•朝陽區(qū)二模)如圖,△AOC在平面直角坐標系中,∠AOC=90°,且O為坐標原點,點A、C分別在坐標軸上,AO=4,OC=3,將△AOC繞點C按逆時針方向旋轉,旋轉后的三角形記為△CA′O′.
(1)當CA邊落在y軸上(其中旋轉角為銳角)時,一條拋物線經過A、C兩點且與直線AA′相交于x軸下方一點D,如果S△AOD=9,求這條拋物線的解析式;
(2)繼續(xù)旋轉△CA′O′,當以CA′為直徑的⊙P與(1)中拋物線的對稱軸相切時,圓心P是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年河北省承德市承德縣中考數學模擬試卷(一)(解析版) 題型:解答題

(2008•朝陽區(qū)二模)如圖,△AOC在平面直角坐標系中,∠AOC=90°,且O為坐標原點,點A、C分別在坐標軸上,AO=4,OC=3,將△AOC繞點C按逆時針方向旋轉,旋轉后的三角形記為△CA′O′.
(1)當CA邊落在y軸上(其中旋轉角為銳角)時,一條拋物線經過A、C兩點且與直線AA′相交于x軸下方一點D,如果S△AOD=9,求這條拋物線的解析式;
(2)繼續(xù)旋轉△CA′O′,當以CA′為直徑的⊙P與(1)中拋物線的對稱軸相切時,圓心P是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年重慶市綦江縣趕水鎮(zhèn)中中考數學模擬試卷(一)(解析版) 題型:解答題

(2008•朝陽區(qū)二模)已知:如圖,在梯形ABCD中,AD∥BC,BC=3AD.
(1)如圖①,連接AC,如果三角形ADC的面積為6,求梯形ABCD的面積;
(2)如圖②,E是腰AB上一點,連接CE,設△BCE和四邊形AECD的面積分別為S1和S2,且2S1=3S2,求的值;
(3)如圖③,AB=CD,如果CE⊥AB于點E,且BE=3AE,求∠B的度數.

查看答案和解析>>

科目:初中數學 來源:2011年重慶市綦江縣趕水鎮(zhèn)中中考數學模擬試卷(一)(解析版) 題型:填空題

(2008•朝陽區(qū)二模)已知兩圓的半徑分別為3cm和4cm,如果這兩個圓的圓心距為10cm,那么這兩個圓的位置關系是    

查看答案和解析>>

同步練習冊答案