如圖①,AB是⊙O的直徑,AC是弦,直線EF和⊙O相切于點C,AD⊥EF,垂足為D.
(1)求證:∠DAC=∠BAC;
(2)若把直線EF向上平行移動,如圖②,EF交⊙O于G、C兩點,若題中的其它條件不變,猜想:此時與∠DAC相等的角是哪一個?并證明你的結(jié)論.
分析:(1)連接BC,OC,由半徑OC=OA,根據(jù)等邊對等角可得出一對角相等,再由OC與AD都與EF垂直,得到OC與AD平行,根據(jù)兩直線平行內(nèi)錯角相等可得一對內(nèi)錯角相等,等量代換可得出∠DAC=∠BAC,得證;
(2)∠BAG=∠CAD,理由如下:連接BC,由AB為圓O的直徑,根據(jù)直徑所對的圓周角為直角可得出∠BCA為直角,即三角形ABC為直角三角形,根據(jù)直角三角形中的兩個銳角互余可得出一對角互余,由AD垂直于EF,可得出三角形AGD為直角三角形,同理得到一對銳角互余,再由同弧所對的圓周角相等可得出∠B與∠AGD相等,進而確定出∠BAG=∠GAD,等式兩邊都減去∠CAG即可得到∠BAC=∠GAD,得證.
解答:
解:(1)連接OC,如圖①所示,
∵OC=OA,
∴∠BAC=∠OCA,
∵EF切⊙O于C,
∴OC⊥EF,又AD⊥EF,
∴OC∥AD,
∴∠OCA=∠DAC,
∴∠DAC=∠BAC;                          
(2)∠BAG=∠DAC,理由如下:
連接BC,如圖②所示,
∵AB為⊙O的直徑,
∴∠BCA=90°,
∴∠B+∠BAC=90°,
∵AD⊥EF,∴∠ADG=90°,
∴∠AGD+∠GAD=90°,
AC
=
AC
,∴∠B=∠AGD,
∴∠BAC=∠GAD,
∴∠BAG+∠GAC=∠GAC+∠DAC,即∠BAG=∠DAC.
點評:此題考查了切線的性質(zhì),等腰三角形的性質(zhì),平行線的性質(zhì),圓周角定理,利用了等量代換及轉(zhuǎn)化的思想,連接出相應(yīng)的輔助線,靈活運用性質(zhì)及定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、關(guān)于圖形變化的探討:
(1)①例題1.如圖1,AB是⊙O的直徑,直線l與⊙O有一個公共點C,過A、B分別作l的垂線,垂足為E、F,則EC=CF.
②上題中,當直線l向上平行移動時,與⊙O有了兩個交點C1、C2,其它條件不變,如圖2,經(jīng)過推證,我們會得到與原題相應(yīng)的結(jié)論:EC1=C2F.
③把直線1繼續(xù)向上平行移動,使弦C1C2與AB交于點P(P不與A,B重合).在其它條件不變的情況下,請你在圖3的圓中將變化后的圖形畫出來,標好對應(yīng)的字母,并寫出與①②相應(yīng)的結(jié)論等式.判斷你寫的結(jié)論是否成立,若不成立,說明理由,若成立,給以證明.結(jié)論
EC1=C2F
.證明結(jié)論成立或說明不成立的理由
(2)①例題2.如圖4,BC是⊙O的直徑.直線1是過C點的切線.N是⊙O上一點,直線BN交1于點M.過N點的切線交1于點P,則PM2=PC2
②把例題2中的直線1向上平行移動,使之與⊙O相交,且與直線BN交于B、N兩點之間.其它條件仍然不變,請你利用圖5的圓把變化后的圖形畫出來,標好相應(yīng)的字母,并寫出與①相應(yīng)的結(jié)論等積式,判斷你寫的結(jié)論是否成立,若不成立,說明理由,若成立,給以證明.結(jié)論
PM2=PC1•PC2
.證明結(jié)論成立或說明不成立的理由:
(3)總結(jié):請你通過(1)、(2)的事實,用簡練的語言,總結(jié)出某些幾何圖形的一個變化規(guī)律
在某些幾何圖形中,平行移動某條直線,有些幾何關(guān)系保持不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AB是⊙O的直徑,直線l交⊙O于C1、C2,AD⊥l,垂足為D.
(1)求證:AC1•AC2=AB•AD.
(2)若將直線l向上平移(如圖2),交⊙O于C1、C2,使弦C1C2與直徑AB相交(交點不與A、B重合),其他條件不變,請你猜想,AC1、AC2、AB、AD之間的關(guān)系,并說明理由.
(3)若將直線l平移到與⊙O相切時,切點為C,其他條件不變,請你在圖3上畫出變化后的圖形,標好相應(yīng)的字母并猜想AC、AB、AD的關(guān)系是什么?(只寫出關(guān)系,不加以說明)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若AB是⊙0的直徑,CD是⊙O的弦,∠C=30°,BD=1,則⊙O的半徑是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海滄區(qū)一模)如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=50°,則∠BCD=
40°
40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,弦AB是⊙O的內(nèi)接正方形的一條邊,則弦AB所對的圓周角的度數(shù)為
45°或135°
45°或135°

查看答案和解析>>

同步練習(xí)冊答案