現(xiàn)有一形如直角三角板的三角形ABC(如圖1),其中∠C=90°,∠A=45°,該三角形內(nèi)有一個(gè)半徑為1cm的⊙O,圓心O到三邊的距離均為
2
cm.將△ABC繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為α (0°<α≤90°),旋轉(zhuǎn)后的三角形記為△EFC,⊙O記為⊙P.
(1)當(dāng)α=45°時(shí)(如圖2),試判斷EF與CB的位置關(guān)系并說(shuō)明理由;
(2)當(dāng)⊙P與⊙O相外切時(shí)(如圖3),①求旋轉(zhuǎn)角α;②求⊙P掃過(guò)的面積;
(3)當(dāng)CF與⊙O相切時(shí),則sinα=
6
+
2
4
6
-
2
4
6
+
2
4
6
-
2
4
(直接寫(xiě)出答案,結(jié)果保留根號(hào)).
分析:(1)根據(jù)等腰直角三角形的銳角是45°,旋轉(zhuǎn)角是45°,即可得到∠F=∠FCB,從而判斷EF∥BC;
(2)①根據(jù)兩圓外切的性質(zhì):圓心距等于半徑的和,即可求得OP的長(zhǎng),求得OC的長(zhǎng),則△OPC的形狀即可判斷,從而求得旋轉(zhuǎn)角;
②根據(jù)⊙P掃過(guò)的面積S=S扇形CIJ-S扇形CGH+S⊙O,利用扇形的計(jì)算公式和圓的面積公式即可求解;
(3)首先求得旋轉(zhuǎn)角,即可得到.
解答:解:(1)EF∥CB.
理由:∵當(dāng)α=450時(shí),∠F=∠FCB,
∴EF∥CB;                         

(2)連接CO、CP,作OM⊥BC于M.
在直角△OCM中,OM=
2
,∠OCM=45°,
則OC=2,則OC=CP=2,
①∵當(dāng)⊙P與⊙O相外切時(shí),OP=2cm,
∴CO=CP=OP
∴∠PCO=60°
∴旋轉(zhuǎn)α=60°
②S扇形CIJ-S扇形CGH=
60
360
•π•32-
60
360
•π•12=
4
3
π

則S=S扇形CIJ-S扇形CGH+S⊙O=
4
3
π+π=
7
3
π
;

(3)當(dāng)如圖(1)時(shí),作PN⊥AC,
則在直角△PNC中,
∵PN=1,CP=2,
∴∠PCN=30°,
∵∠ACO=45°,
∴∠PCO=75°,即α=75°
則sinα=sin75°=
6
+
2
4
;
當(dāng)如圖(2)時(shí),連接OC、PC,設(shè)⊙P與AC切于點(diǎn)Q,連接PQ.
則∠ACP=30°,∠ACO=45°,
因而旋轉(zhuǎn)角α=∠ACO-∠ACP=15°,
則sinα=sin15°=
6
-
2
4

故答案是:
6
+
2
4
6
-
2
4
點(diǎn)評(píng):本題考查了扇形的面積公式,切線(xiàn)的性質(zhì),以及三角函數(shù),正確作出(3)中的兩種情況的圖形,求得旋轉(zhuǎn)角的度數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省南京師范大學(xué)附中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

現(xiàn)有一形如直角三角板的三角形ABC(如圖1),其中∠C=90°,∠A=45°,該三角形內(nèi)有一個(gè)半徑為1cm的⊙O,圓心O到三邊的距離均為cm.將△ABC繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為α (0°<α≤90°),旋轉(zhuǎn)后的三角形記為△EFC,⊙O記為⊙P.
(1)當(dāng)α=45°時(shí)(如圖2),試判斷EF與CB的位置關(guān)系并說(shuō)明理由;
(2)當(dāng)⊙P與⊙O相外切時(shí)(如圖3),①求旋轉(zhuǎn)角α;②求⊙P掃過(guò)的面積;
(3)當(dāng)CF與⊙O相切時(shí),則sinα=______

查看答案和解析>>

同步練習(xí)冊(cè)答案