【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.
(1)尺規(guī)作圖:作出將△PAC繞點(diǎn)A逆時針旋轉(zhuǎn)60°后所得到的△P′AB(不要求寫作法,但需保留作圖痕跡).
(2)求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).
【答案】(1)詳見解析;(2)PP′=6,∠APB=150°.
【解析】
(1)作等邊三角形APP′,連接P′B,則△P′AB是所求作的三角形;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PAP′=60°,PA=P′A=6,P′B=PC=10,利用等邊三角形的判定方法得到△PAP′為等邊三角形,再根據(jù)等邊三角形的性質(zhì)有PP′=PA=6,∠P′PA=60°,由于PP′2+PB2=P′B2,根據(jù)勾股定理的逆定理得到△BPP′為直角三角形,且∠BPP′=90°,則∠APB=∠P′PB+∠BPP′=60°+90°=150°.
解:(1)將△PAC繞點(diǎn)A逆時針旋轉(zhuǎn)60°后所得到的△P′AB如圖:
(2)如圖,∵△PAC繞點(diǎn)A逆時針旋轉(zhuǎn)60°后,得到△P′AB,
∴∠PAP′=60°,PA=P′A=6,P′B=PC=10,
∴△PAP′為等邊三角形,
∴PP′=PA=6,∠P′PA=60°,
在△BPP′中,P′B=10,PB=8,PP′=6,
∵62+82=102,
∴PP′2+PB2=P′B2,
∴△BPP′為直角三角形,且∠BPP′=90°,
∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC、AB于點(diǎn)E. F.
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E為AB中點(diǎn).
(1)求證:四邊形BCDE是菱形.
(2)若AD=6,BD=8,求四邊形BCDE的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是反比例圖數(shù)y=(x<0)圖象上一點(diǎn),AC⊥x軸于點(diǎn)C,與反比例函數(shù)y=(x<0)圖象交于點(diǎn)B,AB=2BC,連接OA、OB,若△OAB的面積為3,則m+n=( 。
A.﹣4B.﹣6C.﹣8D.﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了預(yù)測九年級男生“排球30秒”對墻墊球的情況,從本校九年級隨機(jī)抽取了n名男生進(jìn)行該項(xiàng)目測試,并繪制出如下的頻數(shù)分布直方圖,其中從左到右依次分為七個組(每組含最小值,不含最大值).根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:
(1)求n的值.
(2)這個樣本數(shù)據(jù)的中位數(shù)落在第幾組?
(3)若測試九年級男生“排球30秒”對墻墊球個數(shù)不低于10個為合格,根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該校九年級450名男同學(xué)成績合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(m,n)是拋物線上的一個動點(diǎn).
(1)如圖1,過動點(diǎn)P作PB⊥x軸,垂足為B,連接PA,請通過測量或計(jì)算,比較PA與PB的大小關(guān)系:PA_____PB(直接填寫“>”“<”或“=”,不需解題過程);
(2)請利用(1)的結(jié)論解決下列問題:
①如圖2,設(shè)C的坐標(biāo)為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,簡單說明理由;
②如圖3,過動點(diǎn)P和原點(diǎn)O作直線交拋物線于另一點(diǎn)D,若AP=2AD,求直線OP的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),分別延長OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com