在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=-x2+(k-1)x+4的圖象與y軸交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B,S△OAB=6,點(diǎn)P在x軸上,且△ABP是以AP為底的等腰三角形,則點(diǎn)P的坐標(biāo)為   
【答案】分析:令x=0,即可求得點(diǎn)A的坐標(biāo),由△AOB的面積公式可求得OB的長(zhǎng),進(jìn)而得到點(diǎn)B的坐標(biāo);若△ABP是以AP為底的等腰三角形,且點(diǎn)P在x軸上,故點(diǎn)P的位置由等腰三角形的性質(zhì)求得即可.
解答:解:由解析式可知,點(diǎn)A的坐標(biāo)為(0,4).
∵S△OAB=×BO×4=6,
∴BO=3.
∴B(3,0)或(-3,0),
∵二次函數(shù)與x軸的負(fù)半軸交于點(diǎn)B,
∴點(diǎn)B的坐標(biāo)為(-3,0);
∴AB===5
∵△ABP是以AP為底的等腰三角形,
∴AB=BP=5,
∴點(diǎn)P的坐標(biāo)為(2,0)或(-8,0).
故答案是:(2,0)或(-8,0).
點(diǎn)評(píng):本題考查了拋物線與x軸的交點(diǎn).解答該題需要注意有兩個(gè)地方容易出錯(cuò):①點(diǎn)B位于x軸的負(fù)半軸;②等腰三角形ABP是以AP為底的三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過(guò)A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問(wèn),考慮有沒(méi)有更簡(jiǎn)捷的解題策略?請(qǐng)說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,開(kāi)口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過(guò)程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過(guò)程記為【90°,2】變換.
(1)在圖中畫(huà)出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過(guò)【θ,k】變換后得到△O′M′N(xiāo)′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案