閱讀下面材料:解答問題

已知;A、B、c是△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.

解:∵a2c2-b2c2=a4-b4

∴c2(a2-b2)=(a2+b2)(a2-b2)②

∴c2=a2+b2

∴△ABC是直角三角形

問題:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤:(寫出序號),

錯誤的原因是;.

(2)請你正確解答:

答案:
解析:

  (1)③(a2-b2)可以為0 2分

  (2)解:∵a2c2-b2c2=a4-b4

  ∴c2(a2-b2)=(a2+b2)(a2-b2)

  ∴c2(a2-b2)-(a2+b2)(a2-b2)=0

  ∴[c2-(a2+b2)](a2-b2)=0

  ∴c2-a2-b2=0或(a2-b2)=0.

  又a、b、c是三角形的邊

  ∴c2=a2+b2或a2=b2或c2=a2+b2且a2=b2

  ∴△ABC是直角三角形或等腰三角形或等腰直角三角形.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料:解答問題
為解方程(x2-1)2-5(x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設x2-1=y,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當y=1時,x2-1=1,∴x2=2,∴x=±
2
;當y=4時,x2-1=4,∴x2=5,∴x=±
5
,故原方程的解為x1=
2
,x2=-
2
,x3=
5
,x4=-
5

上述解題方法叫做換元法;請利用換元法解方程.(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料,解答問題:
材料:在解方程x4-2x2-8=0時,我們可以將x2看成一個整體,然后設x2=y,則x4=y2.原方程可化為y2-2y-8=0,解得y=4或y=-2
當y=4時,x2=4,所以x=2或x=-2
當y=-2時,x2=-2,此方程無解
所以原方程的解為x1=2,x2=-2
問題:請參照上述解法解方程(x2-1)2-5(x2-1)+4=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆福建省長汀縣城區(qū)五校九年級第一次月考聯(lián)考數(shù)學試卷(帶解析) 題型:解答題

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,
解得y1=1,y2=4.當y=1時,x2-1=1,
∴x2=2,
∴x=±;當y=4時,x2-1=4,
∴x2=5,
∴x=±,
故原方程的解為  x1,x2=-,x3,x4=-
上述解題方法叫做換元法;
請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省無棣縣十校聯(lián)考九年級上學期期中數(shù)學試卷 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0  

 

查看答案和解析>>

同步練習冊答案