【題目】解方程組:(1)(用代入消元法);(2)(用加減消元法)
【答案】(1);(2).
【解析】
(1)規(guī)定用代入消元法,選擇①中兩個(gè)未知數(shù),用一個(gè)未知數(shù)來表示另一個(gè)未知數(shù)x=4+y,代入②中求出y=,最后將y的值代回①中求出x=,即可求原方程組的解;
(2)規(guī)定用加減消元法,觀察方程組消去其中的一個(gè)未知數(shù)y,只需將①×2②,可得x=2,將x=2代回原方程組中的②得y=1,即可求出原方程組的解.
解:(1),
由①得:x=4+y,③,
把③代入②得:4(4+y)+2y=﹣1,
解得:y=;
把y=代入①得:x=,
∴二元一次方程組的解為;
(2),
由①×2﹣②得:15x=30,
解得:x=2,
把x=2代入②得:3×2+4y=10,
解得:y=1,
∴二元一次方程組的解為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,ABCD中,點(diǎn)E,F(xiàn)在直線AC上(點(diǎn)E在F左側(cè)),BE∥DF.
(1)求證:四邊形BEDF是平行四邊形;
(2)若AB⊥AC,AB=4,BC=,當(dāng)四邊形BEDF為矩形時(shí),求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有2個(gè)完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字-2,0和1,小明從甲袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)寫出點(diǎn)Q所有可能的坐標(biāo);
(2)求點(diǎn)Q在x軸上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù),且m≠5).
(1)若在其圖象的每個(gè)分支上,y隨x的增大而增大,求m的取值范圍;
(2)若其圖象與一次函數(shù)y=-x+1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,已知∠AOD=120°,AC=16,則圖中長(zhǎng)度為8的線段有( 。
A. 2條 B. 4條 C. 5條 D. 6條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,點(diǎn)P是AB邊上一點(diǎn)(不與A,B重合),連接CP,過點(diǎn)P作PQ⊥CP交AD邊于點(diǎn)Q,連接CQ.
(1)當(dāng)△CDQ≌△CPQ時(shí),求AQ=_________;
(2)取CQ的中點(diǎn)M,連接MD,MP,若MD⊥MP,求AQ=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,把△ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到△A′B′C′.
⑴寫出A′、B′、C′的坐標(biāo);
⑵求出△ABC的面積;
⑶點(diǎn)P在y軸上,且△BCP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,□ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且AE∥BD,BE∥AC,OE=CD.
(1)求證:四邊形 ABCD 是菱形;
(2)若∠ADC=60°,BE=2,求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com