【題目】特值驗(yàn)證:

當(dāng),0,1,2,5,…時(shí),計(jì)算代數(shù)式的值,分別得到5,2,1,2,17,….當(dāng)x的取值發(fā)生變化時(shí),代數(shù)式的值卻有一個(gè)確定的范圍,通過(guò)多次驗(yàn)證可以發(fā)現(xiàn)它的值總大于或等于1,所以1就是它的最小值.

變式求證:

我們可以用學(xué)過(guò)的知識(shí),對(duì)進(jìn)行恒等變形:.(注:這種變形方法可稱為配方”) .所以無(wú)論x取何值,代數(shù)式的值不小于1,即最小值為1.

遷移實(shí)證:

(1)請(qǐng)你用配方的方法,確定的最小值為3;

(2)求的最大值.

【答案】(1)證明見(jiàn)解析;(2)的最大值為

【解析】試題(1)先把給出的式子化成完全平方的形式,再根據(jù)非負(fù)數(shù)的性質(zhì)即可得證;(2 )先把代數(shù)式化成完全平方的形式,再根據(jù)非負(fù)數(shù)的性質(zhì)即可得出答案.

試題解析:(1)證明:

,

.

所以得最小值為3.

(2)

所以的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, 、是腰、上的高,交于點(diǎn)

)求證:

)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計(jì)要求,其中需要長(zhǎng)為 0.8m,2.5m 且粗細(xì)相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場(chǎng)的這種規(guī)格的鋼管每根為 6m

(1)試問(wèn)一根 6 米長(zhǎng)的鋼管有哪些裁剪方法呢?請(qǐng)?zhí)顚?xiě)下空(余料作廢).

方法 1:當(dāng)只裁剪長(zhǎng)為 0.8 米的用料時(shí),最多可剪 根;

方法 2:當(dāng)先剪下 1 2.5 米的用料時(shí),余下部分最多能剪 0.8 米長(zhǎng)的用料 根:

方法 3:當(dāng)先剪下 2 2.5 米的用料時(shí),余下部分最多能剪 0.8 米長(zhǎng)的用料 根.

(2)聯(lián)合用1中的方法 2 和方法 3 各裁剪多少根 6 米長(zhǎng)的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料?

(3)小明經(jīng)過(guò)探究發(fā)現(xiàn):如果聯(lián)合(1)中的二種或三種裁剪方法,還有多種方案能剛好得 到所需要的相應(yīng)數(shù)量的材料,并且所需要 6m 長(zhǎng)的鋼管與(2)中根數(shù)相同,試幫小明說(shuō)明理由,并寫(xiě)出一種與(2)不同的裁剪方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一條筆直地公路上有A,B,C三地,,兩地相距150km,甲、乙兩輛汽車分別從B,C兩地同時(shí)出發(fā),沿公路勻速相向而行,分別駛往C,B兩地.甲、乙兩車到A地的距離y1,y2與行駛時(shí)間x(h)的函數(shù)圖象如圖2所示.(:折線)

(1)請(qǐng)?jiān)趫D1中標(biāo)出A地的大致位置;

(2)2,M點(diǎn)的坐標(biāo)是_________,該點(diǎn)的實(shí)際意義是_________;

(3)求甲車到A地的距離與行駛時(shí)間的函數(shù)關(guān)系式,直接寫(xiě)出乙車到A地的距離y2與行駛時(shí)間的函數(shù)關(guān)系式,并在圖2中補(bǔ)全甲車的函數(shù)圖象;

(4)A地設(shè)有指揮中心,指揮中心與兩車配有對(duì)講機(jī),兩部對(duì)講機(jī)在之15km內(nèi)(15km)時(shí)能夠互相通話,直接寫(xiě)出兩車可以同時(shí)與指揮中心用對(duì)講機(jī)通話的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】感知:如圖①,∠ACD為△ABC的外角,易得∠ACD=∠A+∠B(不需證明) ;

探究:如圖②,在四邊形ABDC中,試探究∠BDC與∠A、∠B.、∠C之間的關(guān)系,并說(shuō)明理由;

應(yīng)用:如圖③,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX=_______度;(直接填答案,不需證明)

拓展:如圖④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,則∠BEC=_______. (直接填答案,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )
A.正數(shù)和負(fù)數(shù)互為相反數(shù)
B.-a的相反數(shù)是正數(shù)
C.任何有理數(shù)的絕對(duì)值都大于它本身
D.任何一個(gè)有理數(shù)都有相反數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購(gòu)買10臺(tái)污水處理設(shè)備.現(xiàn)有A,B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:經(jīng)調(diào)查:購(gòu)買一臺(tái)A型設(shè)備比購(gòu)買一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買2臺(tái)A型設(shè)備比購(gòu)買3臺(tái)B型設(shè)備少6萬(wàn)元.

A

B

價(jià)格(萬(wàn)元/臺(tái))

a

b

處理污水量(噸/月)

240

180

1)求a,b的值;

2)治污公司經(jīng)預(yù)算購(gòu)買污水處理設(shè)備的資金不超過(guò)105萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買方案;

3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,陰影部分是邊長(zhǎng)為a的大正方形中剪去一個(gè)邊長(zhǎng)為b的小正方形后所得到的圖形,將陰影部分通過(guò)割、拼,形成新的圖形,給出下列3種割拼方法,其中能夠驗(yàn)證平方差公式的是( )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,兩個(gè)含有30°角的完全相同的三角板ABCDEF沿直線l滑動(dòng),下列說(shuō)法錯(cuò)誤的是(  )

A. 四邊形ACDF是平行四邊形 B. 當(dāng)點(diǎn)EBC中點(diǎn)時(shí),四邊形ACDF是矩形

C. 當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形

查看答案和解析>>

同步練習(xí)冊(cè)答案