△ABC∽△A′B′C′,且相似比是3:4,△ABC的周長是27cm,則△A′B′C′的周長為    cm.
【答案】分析:已知△ABC∽△A′B′C′,根據(jù)相似三角形的周長比等于相似比即可求出△A′B′C′的周長.
解答:解:∵△ABC∽△A′B′C′,且相似比是3:4,
∴△ABC、△A′B′C′的周長比為3:4;
∵△ABC的周長是27cm,
∴△A′B′C′的周長為36cm.
點評:此題主要考查的是相似三角形的性質(zhì):相似三角形的周長比等于相似比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,△A′BC′是△ABC繞點B順時針旋轉(zhuǎn)后得到的,則圖中AB的對應(yīng)線段是
A′B
,∠A′BC′=
∠ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰三角形ABC中,∠ABC=120°,點P是底邊AC上一個動點,M,N分別是AB,BC的中點,若PM+PN的最小值為2,則△ABC的周長是( 。
A、2
B、2+
3
C、4
D、4+2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知點D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:AE=DF;
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖所示,Rt△ABC中,∠C=90°,BE平分∠B交于AC于E,DE垂直平分AB交AB于D,則∠A的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,斜邊為c,兩直角邊分別為a,b.證明:
c+a
c-a
+
c-a
c+a
=
2c
b

查看答案和解析>>

同步練習(xí)冊答案