【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求△ABP的周長(zhǎng).
(2)問t為何值時(shí),△BCP為等腰三角形?(要有必要的過程)
【答案】
(1)解:如圖1,由∠C=90°,AB=5cm,BC=3cm,
∴AC=4,動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,
∴出發(fā)2秒后,則CP=2,
∵∠C=90°,
∴PB=
∴△ABP的周長(zhǎng)為:AP+PB+AB=2+5+ =7+
(2)解:①如圖2,若P在邊AC上時(shí),BC=CP=3cm,
此時(shí)用的時(shí)間為3s,△BCP為等腰三角形;
②若P在AB邊上時(shí),有三種情況:
i)如圖3,若使BP=CB=3cm,此時(shí)AP=2cm,P運(yùn)動(dòng)的路程為2+4=6cm,
所以用的時(shí)間為6s,△BCP為等腰三角形;
ii)如圖4,若CP=BC=3cm,過C作斜邊AB的高,根據(jù)面積法求得高為2.4cm,
作CD⊥AB于點(diǎn)D,
在Rt△PCD中,PD=1.8,
所以BP=2PD=3.6cm,
所以P運(yùn)動(dòng)的路程為9-3.6=5.4cm,
則用的時(shí)間為5.4s,△BCP為等腰三角形;
ⅲ)如圖5,若BP=CP,此時(shí)P應(yīng)該為斜邊AB的中點(diǎn),P運(yùn)動(dòng)的路程為4+2.5=6.5cm
則所用的時(shí)間為6.5s,△BCP為等腰三角形;
綜上所述,當(dāng)t為3s、5.4s、6s、6.5s時(shí),△BCP為等腰三角形
【解析】(1)根據(jù)勾股定理求出AC的長(zhǎng),由出發(fā)2秒后,得到CP=2,再根據(jù)勾股定理求出PB的長(zhǎng),得到△ABP的周長(zhǎng);(2)①若P在邊AC上時(shí),BC=CP=3cm,此時(shí)用的時(shí)間為3s,△BCP為等腰三角形;②若P在AB邊上時(shí),有三種情況,若使BP=CB=3cm,此時(shí)AP=2cm,P運(yùn)動(dòng)的路程為2+4=6cm,所以用的時(shí)間為6s,△BCP為等腰三角形;若CP=BC=3cm,過C作斜邊AB的高,根據(jù)面積法求得高為2.4cm,得到用的時(shí)間為5.4s,△BCP為等腰三角形;若BP=CP,此時(shí)P應(yīng)該為斜邊AB的中點(diǎn),P運(yùn)動(dòng)的路程為4+2.5=6.5cm,所用的時(shí)間為6.5s,△BCP為等腰三角形;此題是綜合題,難度較大,分類討論時(shí)需認(rèn)真仔細(xì).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的判定的相關(guān)知識(shí),掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第天(為正數(shù))的售價(jià)、銷量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷售該水果第(天)的利潤(rùn)為(元),求與()之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷售利潤(rùn)最大?
(3)在(2)的條件下,若要使第15天的利潤(rùn)比(2)中最大利潤(rùn)最多少127.5元,則第15天在第14天的價(jià)格基礎(chǔ)上最多可降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,已知點(diǎn)D、E、F分別是BC、AD、CE的中點(diǎn),且 =4,則 的值是( )
A.1
B.1.5
C.2
D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直接坐標(biāo)系中,將一塊含義角的直角三角板如圖放置,直角頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,頂點(diǎn)恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿軸正方向平移,當(dāng)頂點(diǎn)恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,DF⊥AE于點(diǎn)F,求∠ADF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面這幾個(gè)車標(biāo)中,是中心對(duì)稱圖形而不是軸對(duì)稱圖形的共有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六邊形的內(nèi)角都相等,,則下列結(jié)論成立的個(gè)數(shù)是
① ;②;③;④四邊形是平行四邊形;⑤六邊形 即是中心對(duì)稱圖形,又是軸對(duì)稱圖形( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠B=∠C,與△ABC全等的三角形有一個(gè)角是100°,那么△ABC中與這個(gè)角對(duì)應(yīng)的角是( )
A. ∠A B. ∠B C. ∠C D. ∠D
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com