(本題12分) 在正方形網(wǎng)格中,A、B為格點,以點為圓心,為半徑作圓交網(wǎng)格線于點(如圖(1)),過點作圓的切線交網(wǎng)格線于點,以點為圓心,為半徑作圓交網(wǎng)格線于點(如圖(2)).

 

 

 

 

 

 


問題:

1.(1) 求的度數(shù);

2.(2) 求證:

3.(3) 可以看作是由經過怎樣的變換得到的?并判斷的形狀(不用說明理由).

4.(4) 如圖(3),已知直線,且a∥b,b∥c,在圖中用直尺、三角板、圓規(guī)畫等邊三角形,使三個頂點,分別在直線上.要求寫出簡要的畫圖過程,不需要說明理由.

 

 

 

 

 

 

 

【答案】

 

1.(1)=60°

2.略

3.(3)是由繞點A順時針旋轉60°得到的. 是等邊三角形.

 

4.(4)①在直線a上任取一點,記為點A′,作A′M′⊥b,垂足為點M′;②作線段A′M′的垂直平分線,此直線記為直線d;③以點A′為圓心,A′M′長為半徑畫圓,與直線d交于點N′;④過點N′作N′C′⊥A′N′交直線c于點C′;⑤以點A′為圓心,A ′C′ 長為半徑畫圓,此圓交直線b于點B′;

連接A′B′、B′C′,則△A′B′C′為所求等邊三角形

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題12分)如圖,在平面直角坐標系中,等腰梯形OABC,CB//OA,且點A在x軸正半軸上.已知C(2,4),BC=4.

(1)求過O、C、B三點的拋物線解析式,并寫出頂點坐標和對稱軸;

(2)經過O、C、B三點的拋物線上是否存在P點(與原點O不重合),使得P點到兩坐標軸的

距離相等.如果存在,求出P點坐標;如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題12分)
如圖,面積為8的矩形ABOC的邊OB、OC分別在軸、軸的正半軸上,點A在雙曲線
圖象上,且AC=2.

【小題1】(1)求值;
【小題2】(2)將矩形ABOC以B旋轉中心,順時針旋轉90°后得到矩形FBDE,雙曲線交DE于M點,交EF于N點,求△MEN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題12分)如圖,在平面直角坐標系中,等腰梯形OABC,CB//OA,且點A在x軸正半軸上.已知C(2,4),BC= 4.
(1)求過O、C、B三點的拋物線解析式,并寫出頂點坐標和對稱軸;
(2)經過O、C、B三點的拋物線上是否存在P點(與原點O不重合),使得P點到兩坐標軸的
距離相等.如果存在,求出P點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江臨安於潛第一初級中學九年級上期末綜合考試數(shù)學試卷(一)(帶解析) 題型:解答題

(本題12分)
某商品的進價為每千克40元,銷售單價與月銷售量的關系如下表(每千克售價不能高于65元):

銷售單價(元)
50
53
56
59
62
65
月銷售量(千克)
420
360
300
240
180
120
 
該商品以每千克50元為售價,在此基礎上設每千克的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.
(1)求的函數(shù)關系式,并直接寫出自變量的取值范圍;
(2)每千克商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆九年級第三次模擬考試數(shù)學卷 題型:解答題

(本題滿分12分)在直角坐標系中,O為坐標原點,點A的坐標為(2,2),點C是線段OA上的一個動點(不運動至O,A兩點),過點C作CD⊥x軸,垂足為D,以CD為邊在右側作正方形CDEF. 連接AF并延長交x軸的正半軸于點B,連接OF,設OD=t.

【小題1】⑴ 求tan∠FOB的值;
【小題2】⑵用含t的代數(shù)式表示△OAB的面積S;
【小題3】⑶是否存在點C,使以BE,F為頂點的三角形與△OFE相似,若存在,請求出所有滿足要求的B點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案